Arterial hypertension is one of the most common diseases of the cardiovascular system.

Aim – to study dynamics of cardiac rhythm disorders, serum urotensin II and angiotensin II levels in patients with stage II hypertension associated with carotid atherosclerosis during treatment with candesartan and lercanidipine.

Methods of the study. Under our observation there were 122 patients with stage 2 hypertension aged between 36–75 years. Average age of the patients was 51.52±1.27 years, including men – 52 (43 %), women – 70 (57 %). Cardiac arrhythmias and conduction disorders were detected by means of Holter ECG. Serum urotensin II and angiotensin II levels in the blood serum were determined by use of an immunoenzymatic method. Statistical analysis was performed by means of the Statistica® 6.0 for Windows (StatSoft Inc.) software using parametric and nonparametric methods.

Results. It was found that the receiving of lercanidipine and candesartan showed unidirectional positive effect on cardiac rhythm disorders in most patients with stage II hypertension. The use of candesartan statistically insignificantly increased levels of angiotensin II in patients of the first group of observation by 20.8 % compared with baseline values (p>0.05). However, as a result of candesartan treatment serum angiotensin II levels in patients with stage II hypertension without carotid atherosclerosis reliably increased by 47.1 % (p<0.05). Unlike candesartan, the use of lercanidipine leads to a statistically significant decrease in the concentration of urotensin II by 30.8 % (p<0.05) in patients with stage II hypertension associated with carotid atherosclerosis.

Conclusions. Lercanidipine can be recommended as a first line antihypertensive drug in case of simultaneous hypertension and atherosclerotic lesion of brachiocephalic arteries.
Артериальная гипертензия (АГ) – это одна из самых распространенных заболеваний сердечно-сосудистой системы. Непервоначальный контроль гипертензии связан с высоким риском развития гипертонической болезни, кереброваскулярных и почечных осложнений [1]. Липоидная артериальная гипертензия связана с высоким риском развития сердечно-сосудистых осложнений и почечных осложнений [2].

Результаты. Изучено влияние лерканидипина и кандесартана на уровень ацетилхолина в бычей межреберной мышце. Лерканидипин снижал уровень ацетилхолина на 30,8% (p<0,05) у больных с гипертонической болезнью II стадии. Кандесартан, применение которого в условиях сочетанного течения артериальной гипертензии и атеросклеротического поражения сонных артерий, не было статистически значимым.

Выводы. Лерканидипин может быть рекомендован в качестве препарата первой линии в условиях сочетанного течения артериальной гипертензии и атеросклеротического поражения сонных артерий.

Атериальная гипертензия (АГ) – это один из самых распространенных заболеваний сердечно-сосудистой системы. Непервоначальный контроль гипертензии связан с высоким риском развития гипертонической болезни, кереброваскулярных и почечных осложнений [1]. Липоидная артериальная гипертензия связана с высоким риском развития сердечно-сосудистых осложнений и почечных осложнений [2].

Результаты. Изучено влияние лерканидипина и кандесартана на уровень ацетилхолина в бычей межреберной мышце. Лерканидипин снижал уровень ацетилхолина на 30,8% (p<0,05) у больных с гипертонической болезнью II стадии. Кандесартан, применение которого в условиях сочетанного течения артериальной гипертензии и атеросклеротического поражения сонных артерий, не было статистически значимым.

Выводы. Лерканидипин может быть рекомендован в качестве препарата первой линии в условиях сочетанного течения артериальной гипертензии и атеросклеротического поражения сонных артерий.

Depending on the applied therapy patients of the first group of observation were randomized in the two groups of 30 patients each. 31 patients of the second clinical group received candesartan, other 31 persons – lercanidipine. Subgroups of patients were actually compared on grounds such as average age, sex, duration of hypertension medical history, levels of office blood pressure and heart rate. If there was no decrease in blood pressure at least by 10 % compared with baseline values after the first week of treatment, the protocol supposed to add to treatment indapamide 1.5 mg per day. The course of treatment was 12 weeks.

Cardiac arrhythmias and conduction disorders were detected by means of Holter ECG. During the period of study patients followed the usual daily regimen. The duration of monitoring was 24 hours. During observation, patients kept so-called patient’s diary in order to compare the registered ECG record and patient’s action at this point.

Serum UT II and AT II levels were determined in the Central Research Laboratory of Zaporizhzhya State Medical University using ELISA microplate reader SIRIO S (Italy) and reagents produced by Peninsula Laboratories (USA); this process was based on the measurement of optical density of the samples according to the manufacturer’s instructions. 84 serum samples of patients with HTN were studied, including the period of treatment. All values were obtained automatically and calculated in ng/ml.

Statistical analysis was performed by means of the Statistica® 6.0 for Windows (StatSoft Inc.) software using parametric and nonparametric methods. In case of normal distribution of the studied variables data are presented as average and standard deviation (SD) and as median. For all types of analysis differences are considered statistically significant when p<0.05.

In case of non-normal distribution U-Mann-Whitney test was applied for two independent samples, Wilcoxon test for comparing two dependent samples and Kruskal-Wallis criterion followed by Games-Howell comparison test for more samples.

To analyse the effect of treatment on the studied values in case of normal data distribution the univariate repeated measures ANOVA followed by Newman-Keuls or Games-Howell tests were used, given the multiplicity of comparisons. In cases when the distribution of the studied variables did not meet the assumption of normality, the Friedman test was used as a non-parametric analogue to the repeated measures ANOVA. Comparisons of two groups were performed using Wilcoxon test.

Results and discussion

Analysis of the data demonstrated that treatment with candesartan resulted in positive changes regarding cardiac rhythm disorders in patients with arterial hypertension (Table 1). Thus, the patients of the first group of observation showed statistically significant reduction in the number of supraventricular arrhythmias and the difference was 13.0 % (p<0.05).

As for paired ventricular extrasystoles in patients with stage II HTN and carotid atherosclerosis observed differences were not reliable, compared with the baseline values 21.2 % (p>0.05). In the first clinical group treatment with candesartan resulted in no significant decrease in both isolated premature ventricular contractions – 9.7 % (p>0.05) and polymorphic ventricular extrasystoles – 28.8 % (p>0.05). Thus, after treatment for supraventricular and isolated ventricular extrasystoles differences between individuals in the control group and patients with stage II HTN and carotid atherosclerosis kept statistically significant.

In the second clinical group during therapy with candesartan patients experienced a significant reduction in the number of both supraventricular premature complexes – 18.2 (p<0.05) and paired ventricular extrasystoles – by 59.4 % (p<0.05). As for other types of arrhythmia the following dynamics was established in patients with stage II HTN without carotid atherosclerosis: isolated ventricular extrasystoles reliably decreased by 14.8 % (p>0.05) and polymorphic ventricular premature contractions – by 16.8 % (p>0.05).

Candesartan administration in patients of the first group observation led to the decrease in the number of patients with AF to 2 persons, although before the treatment their number was 3. As a result of antihypertensive therapy there were no patients with AF among the patients diagnosed for stage II HTN without carotid atherosclerosis.

Both groups of observation demonstrated positive dynamics under the influence of lercanidipine treatment in therapy of cardiac rhythm disorders (Table 2). Thus, patients with stage II HTN and carotid atherosclerosis showed no significant decrease in the number of supraventricular arrhythmias and the difference was 12.6 % (p>0.05). At the same time, 12-week treatment with lercanidipine demonstrated a statistically significant difference regarding isolated ventricular extrasystoles – 15.6 % (p<0.05) as well as polymorphic ventricular premature contractions – 56.1 % (p<0.05). In addition, patients of the first clinical group had no reliable reduction in paired ventricular beats – 18.6 % (p>0.05). Differences between individuals in the control group and pa-

<table>
<thead>
<tr>
<th>Types of arrhythmia</th>
<th>Control group (n=7)</th>
<th>Patients with arterial hypertension and carotid atherosclerosis (n=18)</th>
<th>Patients with stage II hypertension (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment</td>
<td>After treatment</td>
<td>Before treatment</td>
</tr>
<tr>
<td>Supraventricular arrhythmias</td>
<td>102.4±18.8</td>
<td>320.97±12.3*</td>
<td>278.25±12.4*</td>
</tr>
<tr>
<td>Isolated ventricular extrasystoles</td>
<td>34.7±10.2</td>
<td>218.14±12.5*</td>
<td>196.89±13.7*</td>
</tr>
<tr>
<td>Polymorphic ventricular extrasystoles</td>
<td>–</td>
<td>36.43±10.4*</td>
<td>25.93±11.3*</td>
</tr>
<tr>
<td>Paired ventricular extrasystoles</td>
<td>–</td>
<td>24.02±3.2*</td>
<td>18.93±4.1*</td>
</tr>
</tbody>
</table>

Notes: * – indicates significant difference from the corresponding values of the control group (p<0.001); † – indicates significant difference from baseline values (p<0.05).
tients with stage II HTN and carotid atherosclerosis remained statistically significant after treatment for both supraventricular arrhythmias and isolated ventricular extrasystoles.

Among the patients of the second clinical group 12-week treatment with lercanidipine did not lead to any significant changes in the types of arrhythmia. However, some positive dynamics was observed in patients with stage II HTN without carotid atherosclerosis: supraventricular arrhythmias statistically insignificantly decreased by 9.8 % (p>0.05), isolated ventricular extrasystoles – by 10.7 % (p>0.05), polymorphic ventricular premature contractions – 21.6 % (p>0.05) and paired ventricular extrasystoles – by 19.3 % (p>0.05).

In addition, as for 3 patients in the first group of observation who had paroxysms of AF before treatment with lercanidipine, by the end of treatment this type of arrhythmia remained only in 1 patient. The number of patients with stage II HTN without carotid atherosclerosis and AF didn’t changed as a result of treatment and was 2 persons.

Analysis of the data (Table 3) allowed to affirm that during treatment with candesartan serum levels of UT II in patients with hypertension associated with carotid atherosclerosis tended to decrease compared with the rate before treatment – by 21.4 % (p>0.05). As a result of treatment serum levels of AT II in patients of the first group of observation statistically insignificantly increased by 20.8 % compared with baseline values (p>0.05). In patients with stage II HTN and carotid atherosclerosis significant differences between the final levels of UT II, AT II and those of the control group remained.

Patients of the second group of observation showed no statistically significant difference in the UT II levels before and after treatment with candesartan – 24.0 % (p>0.05). However, as a result of treatment serum AT II levels in patients with stage II HTN without carotid atherosclerosis reliably increased by 47.1 % (p>0.05). It should be noted that among the second group of observation differences from the control group regarding serum UT II, AT II levels kept statistically significant.

12-week treatment with lercanidipine had a positive effect on serum UT II and AT II concentrations in patients with arterial hypertension (Table 4). Thus, among the first group of observation as a result of treatment serum UT II levels statistically

Table 2

<table>
<thead>
<tr>
<th>Types of arrhythmia</th>
<th>Control group (n=7)</th>
<th>Patients with arterial hypertension and carotid atherosclerosis (n=19)</th>
<th>Patients with stage II hypertension (n=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment</td>
<td>After treatment</td>
<td>Before treatment</td>
</tr>
<tr>
<td>Supraventricular arrhythmias</td>
<td>102.45±18.8</td>
<td>320.18±14.8*</td>
<td>279.71±13.9*</td>
</tr>
<tr>
<td>Isolated ventricular extrasystoles</td>
<td>34.71±10.2</td>
<td>224.89±12.1*</td>
<td>189.74±12.5**</td>
</tr>
<tr>
<td>Polymorphic ventricular extrasystoles</td>
<td>–</td>
<td>38.93±8.1*</td>
<td>17.11±7.2**</td>
</tr>
<tr>
<td>Paired ventricular extrasystoles</td>
<td>–</td>
<td>22.71±3.2*</td>
<td>18.49±3.7*</td>
</tr>
</tbody>
</table>

Notes: * – indicates significant difference from the corresponding values of the control group (p<0.001); † – indicates significant difference from baseline values (p<0.05).

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group (n=8)</th>
<th>Patients with arterial hypertension and carotid atherosclerosis (n=20)</th>
<th>Patients with stage II hypertension (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment</td>
<td>After treatment</td>
<td>Before treatment</td>
</tr>
<tr>
<td>UT II, ng/ml</td>
<td>0.08±0.02</td>
<td>0.42±0.05*</td>
<td>0.33±0.04*</td>
</tr>
<tr>
<td>AT II, ng/ml</td>
<td>0.06±0.01</td>
<td>0.24±0.03*</td>
<td>0.29±0.04*</td>
</tr>
</tbody>
</table>

Notes: * – indicates significant difference from the corresponding values of the control group (p<0.001); † – indicates significant difference from the corresponding values of the control group (p<0.05); † – indicates significant difference from baseline values (p<0.05).

Table 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group (n=8)</th>
<th>Patients with arterial hypertension and carotid atherosclerosis (n=20)</th>
<th>Patients with stage II hypertension (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment</td>
<td>After treatment</td>
<td>Before treatment</td>
</tr>
<tr>
<td>UT II, ng/ml</td>
<td>0.08±0.02</td>
<td>0.39±0.05*</td>
<td>0.27±0.04*†</td>
</tr>
<tr>
<td>AT II, ng/ml</td>
<td>0.06±0.01</td>
<td>0.23±0.04*</td>
<td>0.18±0.03*</td>
</tr>
</tbody>
</table>

Notes: * – indicates significant difference from the corresponding values of the control group (p<0.001); † – indicates significant difference from the corresponding values of the control group (p<0.05); † – indicates significant difference from baseline values (p<0.05).
significantly decreased compared with baseline values – by 30.8 % (p<0.05). At the same time, serum AT II concentrations statistically insignificantly dropped during treatment with lercanidipine in this group of patients – by 21.7 % (p>0.05). Differences between patients with stage II HTN and carotid atherosclerosis with those in the control group regarding both serum UT II and AT II levels remained reliable.

Patients of the second group of observation receiving lercanidipine for 12 weeks did not result in a reliable decrease of serum UT II and AT II concentrations. Thus, serum UT II decreased only by 26.1 % (p>0.05) and AT II – by 33.3 % (p>0.05).

In addition, AT II after treatment was not statistically significantly different from the control group as opposed to UT II regarding which differences remained statistically significant.

Conclusions
1. The use of lercanidipine and candesartan in most patients with stage II hypertension showed unidirectional positive effect on cardiac rhythm disorders.
2. Treatment with candesartan resulted in increased angiotensin II level in patients in both observation groups.
3. Unlike candesartan, the use of lercanidipine leads to a statistically significant urotensin II concentration decrease by 30.8 % (p<0.05) in patients with stage II hypertension associated with carotid atherosclerosis, and can be recommended as the first antihypertensive line in this category of patients.

Conflicts of Interest: authors have no conflict of interest to declare.

References

Information about authors:
Vizir V. A., PhD, Professor of Chair of Internal Diseases 2, Zaporizhzhia State Medical University, Ukraine.
Demidenko O. V., PhD, Associate Professor of Chair of Internal Diseases 2, Zaporizhzhia State Medical University, Ukraine.
Shkolovyi V. V., Senior Assistant of Chair of Internal Diseases 2, Zaporizhzhia State Medical University, Ukraine.
E-mail: vvshkolovoy@gmail.com.

Сведения об авторах:
Визир В. А., д-р мед. наук, профессор каф. внутренних болезней 2, Запорожский государственный медицинский университет, Украина.
Демиденко А. В., канд. мед. наук, доцент каф. внутренних болезней 2, Запорожский государственный медицинский университет, Украина.
Школовий В. В., старший лаборант каф. внутренних болезней 2, Запорожський державний медичний університет, Україна.
E-mail: vvshkolovoy@gmail.com.

Postupila в редакцию 07.10.2016 г.