A new view on molecular genetic features of stomach cancer
DOI:
https://doi.org/10.14739/2310-1210.2017.5.110235Keywords:
stomach neoplasms, immunohistochemistry, genetic markersAbstract
The purpose of this article was to write a literature review on the possibility of genetic typing of patients with stomach cancer at the current stage of the domestic molecular genetic laboratory service development.
Materials and мethods. The combination of molecular factors in gastric cancer (GC) used in the work was based on their relevance in clinical and experimental studies in case of GC over the last 10 years. The frequency of their use in foreign and domestic research works cited by PubMed and Google Scholar Systems, as well as our own research, was estimated.
Results. Signs of genetically-stable stomach cancer (GSGC) were: a combination of low, below 10 %, p53 oncoprotein expression, the presence of at least weak VEGFR-C expression, a high, more than 20 %, proliferative tumor index. Chromosomal-unstable tumors were characterized not only by the presence of positive expression of crbB2, but also by more than 10 % expression of p53 oncoprotein and complete absence of VEGFR-C expression. Microsatellite-unstable GC (MUGC) was characterized by negative expression of the oncoprotein crbB2, positive p53, lack of VEGFR – C. Epstein–Barr virus-associated GC (EBVAGC) was characterized by the absence of the VEGFR-C indicator protein and by the presence of crbB2 positive expression, in combination with a low, below 10 % expression, of the p53 oncoprotein.
Conclusions. Understanding the nature of the GC various genetic variants makes possible two basic types of complex treatment individualization: the individualization of chemotherapy and the personification of the surgical modalities.
References
Kaneda, A., Matsusaka, K., Aburatani, H., & Fukayama, M. (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res, 72(14), 3445–3450. doi: 10.1158/0008-5472.CAN-11-3919.
Malcolm R. Alison (2007) The Cancer Handbook, 2 Volume Set.
Sheffield, B., Garratt, J., Kalloger, S. E., Li-Chang, H. H., Torlakovic, E. E., Gilks, C. B., & Schaeffer, D. F. (2014) HER2/neu testing in gastric cancer by immunohistochemistry: assessment of interlaboratory variation. Arch Pathol Lab Med. Nov, 138(11), 1495–502. . doi: 10.5858/arpa.2013-0604-OA.
Shigeyasu, K., Nagasaka, T., Mori, Y., Yokomichi, N., Kawai, T., Fuji, T., et al. (2015) Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer. PLoS One, 10(6), e0130409. doi: 10.1371/journal.pone.0130409.
He, D., Zhang, Y. W., Zhang, N. N., Zhou, L., Chen, J. N., Jiang, Y., & Shao, C. K. (2015) Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein-Barr virus-associated gastric carcinomas. Med Oncol, 32(4), 92. doi: 10.1007/s12032-015-0525-y.
Popat, S., Hubner, R., & Houlston, R. S. (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol., 23, 609–618. doi: 10.1200/JCO.2005.01.086.
Guastadisegni, C., Colafranceschi, M., Ottini, L., & Dogliotti, E. (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer, 46, 2788–2798. doi: 10.1016/j.ejca.2010.05.009.
Hewish, M., Lord, C. J., Martin, S. A., Cunningham, D., & Ashworth, A. (2010) Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol., 7(4), 197–208. doi: 10.1038/nrclinonc.2010.18.
Valentini, A. M., Armentano, R., Pirrelli, M., & Caruso, M. L. (2006) Chemotherapeutic agents for colorectal cancer with a defective mismatch repair system: the state of the art. Cancer Treat Rev, 32, 607–618. doi: 10.1016/j.ctrv.2006.08.001.
Papouli, E., Cejka, P., & Jiricny, J. (2004) Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells. Cancer Res., 64(10), 3391–3394. doi: 10.1158/0008-5472.CAN-04-0513.
Yamane, K., Schupp, J. E., & Kinsella, T. J. (2007) BRCA1 activates a G2-M cell cycle checkpoint following 6-thioguanine-induced DNA mismatch damage. Cancer Res., 67, 6286–6292. doi: 10.1158/0008-5472.CAN-06-2205.
Ribic, C. M., Sargent, D. J., Moore, M. J., Thibodeau, S. N., French, A. J., Goldberg, R. M., et al. (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med., 349, 247–257. doi: 10.1056/NEJMoa022289.
Sargent, D. J., Marsoni, S., Monges, G., Thibodeau, S. N., Labianca, R., Hamilton, S. R., et al. (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol., 28, 3219–3226. doi: 10.1200/JCO.2009.27.1825.
Sinicrope, F. A., & Sargent, D. J. (2009) Clinical implications of microsatellite instability in sporadic colon cancers. Curr Opin Oncol., 21, 369–373. doi: 10.1097/CCO.0b013e32832c94bd.
De la Chapelle, A., & Hampel, H. (2010) Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol., 28, 3380–3387. doi: 10.1200/JCO.2009.27.0652.
Bertagnolli, M. M., Niedzwiecki, D., Compton, C. C., Hahn, H. P., Hall, M., Damas, B., et al. (2009) Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol., 27, 1814–1821. doi: 10.1200/JCO.2008.18.2071.
Liang, J. T., Huang, K. C., Lai, H. S., Lee, P. H., Cheng, Y. M., Hsu, H. C., et al. (2002) High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer., 101, 519–525. doi: 10.1002/ijc.10643.
Brueckl, W. M., Moesch, C., Brabletz, T., Koebnick, C., Riedel, C., Jung, A., et al. (2003) Relationship between microsatellite instability, response and survival in palliative patients with colorectal cancer undergoing first-line chemotherapy. Anticancer Res., 23, 1773–1777.
Penault-Llorca, F., André, F., Sagan, C., Lacroix-Triki, M., Denoux, Y., Verriele, V., et al. (2009) Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J Clin Oncol., 27(17), 2809–15. doi: 10.1200/JCO.2008.18.2808.
Tsai, H. L., Lin, C. H., Huang, C. W., Yang, I. P., Yeh, Y. S., Hsu, W. H., et al. (2015) Decreased peritherapeutic VEGF expression could be a predictor of responsiveness to first-line FOLFIRI plus bevacizumab in mCRC patients. Int J Clin Exp Pathol., 8(2), 1900–10.
Weiguo, C., Rong, F., Weiping, Y., & Yunlin, W. (2014) VEGF-C expression is associated with the poor survival in gastric cancer tissue. Tumor Biology, 35(4), 3377–3383. doi: 10.1007/s13277-013-1445-0.
Gou, H. F., Chen, X. C., Zhu, J., Jiang, M., Yang, Y., Cao, D., & Hou, M. (2011) Expressions of COX-2 and VEGF-C in gastric cancer: correlations with lymphangiogenesis and prognostic implications. J Exp Clin Cancer Res., 30(1), 14. doi: 10.1186/1756-9966-30-14.
Makoto, I., Joji, K., Shinsuke, K., & Hirokazu, N. (2003) Expression of Vascular Endothelial Growth Factor C and D (VEGF-C and -D) is an Important Risk Factor for Lymphatic Metastasis in Undifferentiated Early Gastric Carcinoma. Japanese Journal of Clinical Oncology, 33(1), 21–27.
Yonemura, Y., Endo, Y., Tabata, K., Kawamura, T., Yun, H. Y., Bandou, E., et al. (2005) Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. International Journal of Clinical Oncology, 10(5), 318–327. doi: 10.1007/s10147-005-0508-7.
Moliterni, A., Ménard, S., Valagussa, P., Biganzoli, E., Boracchi, P., Balsari, A., et al. (2003) HER2 Overexpression and Doxorubicin in Adjuvant Chemotherapy for Resectable Breast Cancer. Journal of Clinical Oncology, 21(3), 458–462. doi: 10.1200/JCO.2003.04.021.
Munroe, M., & Kolesar, J. (2016) Olaparib for the treatment of BRCA-mutated advanced ovarian cancer. Am J Health Syst Pharm., 73(14), 1037–41. doi: 10.2146/ajhp150550.
Moiseyenko, V. M., Chubenko, V. A., Moiseyenko, F. V., Zhabina, A. S., Gorodnova, T. V., & Komarov, Y. I. (2014) Evidence for clinical efficacy of mitomycin C in heavily pretreated ovarian cancer patients carrying germ-line BRCA1 mutation. Med Oncol., 31(10), 199. doi: 10.1007/s12032-014-0199-x.
Nanda, R., Chow, L. Q., Dees, E. C., Berger, R., Gupta, S., Geva, R., et al. (2016) Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol., 34(21), 2460–7. doi: 10.1200/JCO.2015.64.8931.
Epigenomics AG: Darmkrebs-Bluttest jetzt flächendeckend in Deutschland und der Schweiz verfügbar Darmkrebs-Test Epi proColon nur vier Monate nach Markteinführung flächendeckend in Deutschland und der Schweiz verfügbar Epigenomics präsentiert aktuelle klinische Daten auf dem 29. Deutschen Krebskongress in Berlin.
Coppedè, F., Lopomo, A., Spisni, R., & Migliore, L. (2014) Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol., 20(4), 943–956. doi: 10.3748/wjg.v20.i4.943.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)