Angiotensin-converting enzyme gene: application possibilities in medicine and sports cardiology (literature review)

Authors

  • S. M. Malakhova Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2018.1.122155

Keywords:

angiotensin converting enzyme gene, genetic polymorphism, sports medicine

Abstract

Aim. Formation of modern ideas about the effect of angiotensin-converting enzyme polymorphism on the functioning of various body systems including in athletes.

Methods of research. Analysis and synthesis of the modern scientific literature data.

Results. According to modern ideas of sport molecular genetics, individual differences in the expression degree of certain physical and mental qualities of a person are largely determined by DNA-polymorphisms.

Specific features of angiotensin converting enzyme I/D gene polymorphism influence on life-supporting systems functioning of human, who do not engage in sports, have been revealed. This polymorphism is widely covered by professional athletes from the point of view of physical qualities development possibility, but at the same time, the risk of pathological conditions development, taking into account regular intensive physical exertion, has not sufficiently studied. Knowledge of the innate personal physical abilities will help to predict the strengths and weaknesses of a person's physical and adaptive capabilities and, accordingly, to make a timely correct prognosis for personal sports prospects and carry out competent selection of athletes. This approach will allow them to progress quickly and achieve high results in sport.

Conclusions. A feature of genetic markers that do not change throughout life is the possibility of their determination immediately after child’s birth, thus, the prognosis for indicators development that are significant in the conditions of sport activities can be made much earlier.

In the available to us literature, ACE I/D gene polymorphism is primarily evaluated from the perspective of speed-strength development of physical qualities, but at the same time, genetic testing of beginner athletes should allow us to identify a risk group relatively to a number of pathological conditions progression that are genetically determined.

Thus, despite numerous studies that allow an assessment of ACE gene polymorphism contribution to the life-supporting organs and systems state, the role of the ACE gene remains being insufficiently studied in sports medicine.

References

Bondareva, E. A., & Negasheva, M. A. (2017). Geneticheskie aspekty izucheniya sportivnoj uspeshnosti i sportivnogo otbora [Genetic Aspects of Athletic Performance and Sports Selection]. Uspekhi sovremennoj biologii, 137(1), 44–55. [in Russian].

Dautova, A. Z., Usmanova, S. R., & Shamratova, V. G. (2015). Vzaimosvyaz' polimorfizma gena ASE s sostoyaniem gazotransportnoj sistemy u lic s raznym urovnem dvigatel'noj aktivnosti [Correlation between polymorphism of the ACE gene with the state of gas-transportion system in persons with different level of motor activity]. Sovremennye problemy nauki i obrazovaniya, 3, 562. [in Russian].

Drozdovskà, S. B. (2015). Kompleksna molekuliarno-henetychna diahnostyka fizychnoi pratsezdatnosti u sporti [Complex Molecular-Gene tic Diagnostics of Physical Performance in Sports]. Visnyk problem biolohii i medytsyny, 3(2), 332–338. [in Ukrainian].

Drozdovska, S., Bobrovnik, V., Krivoruchenko, O., & Ilyin, V. (2013) Polimorfizmy heniv, shcho spryiaiut vysokii fizychnii pratsezdatnosti u shvydkisno-sylovykh vydakh lehkoi atletyky [Gene polymorphisms that contribute to physical performance in high-speed and power kinds of track and field athletics]. Slobozhanskyi naukovo-sportyvnyi visnyk, 2, 49–54. [in Ukrainian].

Drozdovska, S. B., & Pastukhova, V. A. (2014). Ultrazvukove doslidzhennia sertsia sportsmeniv, yaki spetsializuiutsia u shvydkisno-sylovykh vydakh lehkoi atletyky z riznymy henotypamy za I/D polimorfizmom henu anhiotenzynperetvoriuiuchoho fermentu (ASE) [An ultrasound of the heart of athletes who specialize in speedstrength kinds of athletics with different genotypes for the I/D polymorphism of angiotensin converting enzyme gene (ACE)]. Ukrainskyi morfolohichnyi almanakh, 2, 13–16. [in Ukrainian].

Kolesnikova, L. I., Dolgikh, V. V., & Belyaeva, E. V. (2012). Rol' polimorfizma gena angiotenzinprevrashchayushchego fermenta v realizacii arterial'noj gipertenzii u detej s glomerulonefritom [Role of angiotensin-converting enzyme gene polymorphism in the realization of arterial hypertension in children with glomerulonephritis]. Sibirskij medicinskij zhurnal, 1, 34–37. [in Russian].

Kucher, A. N., Babushkina, N. P., Buikin, S. V., & Puzyrev, V. P (2013). Plejotropnyye e'ffekty genov predraspolozhennosti mnogofaktornym zabolevaniyam [Pleiotropic effects of multifactorial disease susceptibility genes]. Molekulyarnaya medicina, 2, 13–23. [in Russian].

Kucher, A. N., Buykin, S. V., Babushkina, N. P., Puzyrev, K. V., Garganeeva, A. A., Shipulin, V. M., & Puzyrev, V. P. (2015). Analiz associacij polimorfnykh variantov genov modifikacii arterial'nogo davleniya i genov regulyacii immunnogo otveta s ishemicheskoj bolezn'yu serdca [Analysis of associations of polymorphic gene variants of blood pressure modification and immune response regulatory genes with ischemic heart disease]. Molekulyarnaya medicina, 4, 47–54. [in Russian].

Martynovich, Т. V., Akimova, N. S., Fedotov, E. A., & Schwarz, Yu. G. (2014). Analiz geneticheskikh faktorov u bol'nykh khronicheskoj serdechnoj nedostatochnost'yu [Analysis of genetic factors in patients with chronic heart failure]. Mizhnarodnyi medychnyi zhurnal, 20(1), 21–29. [in Russian].

Pavlova, O. S., Ogurtsova, S. E., Gorbat, T. V., Liventseva, M. M., Afonin, V. Yu., Malugin, V. I., & Mrochek, A. G. (2016). Poligennye associacii polimorfizma genov renin-angiotenzin-al'dosteronovoj sistemy pri e'ssencial'noj arterial'noj gipertenzii [Polygenic association of the renin-angiotensin-aldosterone system polymorphisms in essential arterial hypertension]. Arterial'naya gipertenziya, 22(3), 253–262. [in Russian].

Pishak, V. P., & Riznichuk, M. O. (2013). Uchast polimorfnykh heniv u fenotypovykh proiavakh spadkovoi patolohii nyrok [Participation of polymorphic genes in the phenotypic manifestations of hereditary renal disease]. Dosiahnennia biolohii ta medytsyny, 1(21), 67–72. [in Ukrainian].

Chak, T. A., Pavlyushchik, O. O., Khapaliuk, A. V., Afonin, V. Yu., Teplouhova, Yu. S., Sorokina, V. N., & Bilodid, I. K. (2014). Vliyanie gena angiotenzinprevrashchayushchego fermenta na razvitie nejrososudistykh oslozhnenij pri sakharnom diabete 2 tipa [Effect of angiotensin converting enzyme gene on the development of neurovascular complications in type 2 diabetes mellitus]. Medicinskie novosti, 6(249), 53–56. [in Russian].

Ahmetov, I. I., & Fedotovskaya, O. N. (2015). Current progress in sport genomics. Adv. Clin. Chem., 70, 247–314. doi: 10.1016/bs.acc.2015.03.003.

Ben-Zaken, S., Eliakim, A., Nemet, D., & Meckel, Y. (2016). Genetic variability among power athletes: the stronger vs. the faster. J. Strenght. Cond. Res. doi: 10.1519/JSC.0000000000001356.

Bouchard, C. (2015). Exercise genomics--a paradigm shift is needed: a commentary. British journal of Sports Medicine, 49(23), 1492–6. doi: 10.1136/bjsports-2015-095294.

Drozdovska, S. B., Dosenko, V. E., Ahmetov, I. I., & Ilyin, V. N. (2013). The association of gene polymorphisms with athlete status in Ukrainians. Biology of sport, 30(3), 163–167. doi: 10.5604/20831862.1059168.

Dhamrait, S., Maubaret, C., Pedersen-Bjergaard, U., Brull Peter Gohlke, D. J., Payne J. R., World, M., et al. (2016). Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. Inside the Cell, 1(1), 70–81. doi: 10.1002/icl3.1019.

Garatachea, N., & Lucia, A. (2013). Genes and the ageing muscle: a review on genetic association studies. Age (Dordr), 35(1), 207–213. doi: 10.1007/s11357-011-9327-0.

Guth, L. M., & Roth, S. M. (2013). Genetic influence on athletic performance. Curr. Opin. Pediatr., 25(6), 653–658. doi: 10.1097/MOP.0b013e3283659087.

Haykowsky, M. J., & Tomczak, C. R. (2014). LV hypertrophy in resistance or endurance trained athletes: the Morganroth hypothesis is obsolete, most of the time. Heart, 100(16), 1225–6. doi: 10.1136/heartjnl-2014-306208.

Hu, D. C., Zhao, X. L., Shao, J. C., Wang, W., Qian J., Chen, A. H., et al. (2014). Interaction of six candidate genes in essential hypertension. Genet. Mol. Res., 13(4), 8385–8395. doi: 10.4238/2014.

Lindholm, M., & Rundqvist, H. (2016). Skeletal muscle hypoxia-inducible factor-1 and exercise. Ex. Physiol., 101(1), 28–32. doi: 10.1113/EP085318.

Lundby, C., & Jacobs, R. (2016). Adaptations of skeletal muscle mitochondria to exercise training. Ex. Physiol., 101(1), 17–22. doi: 10.1113/EP085319.

Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., & Gao, L. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One, 8(1), e54685. doi: 10.1371/journal.pone.0054685.

Trappe, S., Luden, N., Minchev, K., Raue, U., Jemiolo, B., & Trappe, T. A. (2015). Skeletal muscle signature of a champion sprint runner. J. Appl. Physiol., 118(12), 1460–6. doi: 10.1152/japplphysiol.00037.2015.

Pitsiladis, Y., Wang, G., Wolfarth, B., Scott, R., Fuku, N., Mikami, E., et al. (2013). Genomics of elite sporting performance: what little we know and necessary advances. Br. J. Sports Med., 47(9), 550–5. doi: 10.1136/bjsports-2013-092400.

Webborn, N., Williams, A., McNamee, M., Bouchard, C., Pitsiladis, Y., Ahmetov, I., et al. (2015). Direct-to-consumer genetic testing for predicting sports performance and talent identification: consensus statement. Br. J. Sports med., 49(23), 1486–91. doi: 10.1136/bjsports-2015-095343.

Williams, A. G., Day, S. H., Lockey, S. J., Heffernan, S. M., & Erskine R. M. (2014). Genomics as a practical tool in sport-have we reached the starting line? Cellular and molecular exercise physiology, 3(1), 25–38. doi: 10.7457/cmep.v3i1.e6.

Żebrowska, A., Waśkiewicz, Z., Zając, A., Gąsior, Z., Galbo, H., & Langfort, J. (2013). IGF-1 response to arm exercise with eccentric and concentric muscle contractions in resistance-trained athletes with left ventricular hypertrophy. Int. J. Sports Med., 34(2), 116–122. doi: 10.1055/s-0032-1321720.

Downloads

How to Cite

1.
Malakhova SM. Angiotensin-converting enzyme gene: application possibilities in medicine and sports cardiology (literature review). Zaporozhye medical journal [Internet]. 2018Jan.31 [cited 2024Apr.24];(1). Available from: http://zmj.zsmu.edu.ua/article/view/122155

Issue

Section

Review