Trіazolo[1,5-c]quіnazolіnes Synthesis, antimicrobial and antifungal activity [quinazolin-4(3H)-ylidene]hydrazides of carboxylic acids (Message 1)
DOI:
https://doi.org/10.14739/2310-1210.2018.3.130525Keywords:
N'-(quinazolin-4(3H)-ylidene)carbohydrazides, synthesis, antimicrobial agents, antifungal agentsAbstract
The modern standards and algorithms of antimicrobial therapy, that ensure a high level of the treatment’s quality and prevention of the most infectious-inflammatory diseases, provide wide using of chemotherapeutic agents. However, the modern medicines do not always have satisfactory chemotherapeutic and pharmacological properties; this fact is most often associated with the resistance of microorganisms to them. That is why the creation of the new chemotherapeutic drugs by natural antibiotics’ chemical and microbiological modification, the chemical synthesis of the new substances among the various classes of organic compounds is a topical problem.
The aim of the study is the developing of simple and accessible methods for the synthesis of new [quinazoline-4(3H)-ylidene]hydrazides of cycloalkyl-(hetaryl) carboxylic acids, analysis of their physical-chemical properties, antimicrobial and antifungal activity.
Materials and methods. The study of the antimicrobial activity of synthesized compounds was carried out by the method of two-fold serial dilutions in the Mueller Hinton broth (for strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) and in the Saburo broth (for Candida albicans ATCC 885-653). Minimal Inhibitory Concentration, Minimal Bactericidal and Fungicidal Concentration were defined.
Results. It was found that synthesized compounds show antimicrobial and antifungal activity to researched strains.
Conclusions. There have been considered a number of preparative methods for the synthesis of [quinazoline-4(3H)-ylidene]hydrazides of cycloalkyl-(hetaryl)carboxylic acids, which are significant as chemical reagents for the preparation of condensed heterocyclic and biologically active compounds. The structure and individuality have been proved by elementary analysis and physical-chemical methods (1H NMR-spectroscopy, HPLC/MS). The antimicrobial analysis shows that N'-[quinazoline-4(3H)-ylidene]-2(3)-heteril hydrazides containing a pyridinecarboxylic acid residue in the molecule have the highest activity, which exceeds the activity of the reference standard “Trimethoprim”. N'-(6-bromohinazolin-4(3H)-ylidene)benzofuryl-2-carbohydrazide demonstrates the highest antifungal activity, which is comparable with the reference standard “Ketoconazole”.
References
(2012) World Health Statistics 2012: Monitoring health for the SDGs (2012) Retrieved from: http://www.who.int/gho/publications/world_health_statistics/2012
Karpenko, O. V. (2007). Syntez anelovanykh heterotsyklichnykh spoluk pokhidnykh 4-hidrazynokhinazolinu ta yikh biolohichna aktyvnist (Avtoref. dis…kand. farm. nauk). [Synthesis of annelated heterocyclic compounds of 4-hydrasinoquinazoline and their biological activity]. (Extended abstract of candidate’s thesis). Zaporizhzhia [in Ukrainian].
Nesterova, N. O., Kovalenko, S. I., Karpenko, O. V., Bielienichev, I. F., Maksimov, Yu. M., Vrynchanu, N. O., & Novik, L. V. (2004). Syntez i protymikrobna aktyvnist N-[(5-R-furan-2-il)-metylen]-N-[3-(5-R-furan-2-il)aliliden]-N’-khinazolin-4-il-hidrazyniv. [Synthesis and antimicrobial activity of N-[(5-R-furan-2-yl)-methylene] and N-[3-(5-R-furan-2-yl)allylidene]-N’-quinazoline-4-yl-hydrazines]. Farmatsevtychnyj zhurnal, 6, 79–83 [in Ukrainian].
Ioffe, B. V., Kuznecov M. A., & Potekhin, A. A. (1979). Khimiya organicheskikh proizvodnykh gidrazina [Chemistry of organic derivatives of hydrazine]. Leningrad: Khimiya [in Russian].
El-Hashash, M. A., Rizk, S. A., El-Bassiouny, F. A., & Darwish, K. M. (2012) Reactivity of 2-ethoxyquinazolin-4-yl hydrazine and its Use in Synthesis of Novel Quinazoline Derivatives of Antimicrobial Activity. Global Journal of Health Science. 4(1), 174–183. doi: 10.5539/gjhs.v4n1p174.
Claesen M., & Wanderhaeghe M. (1959) Derives de quinazoline. Bull. Soc. Chim. Belg., 68, 220–222.
Volianskyi, Yu. L., Hrytsenko, I. S., Shyrobokov, V. P., et al. (2004) Vyvchennia spetsyfichnoi aktyvnosti protymikrobnykh likarskykh zasobiv [Specific activity studying of antimicrobial drugs]. Kyiv. [in Ukrainian].
Nakaz Ministerstva okhorony zdorovia Ukrainy «Pro zatverdzhennia metodychnykh vkazivok «Vyznachennia chutlyvosti mikroorhanizmiv do antybakterialnykh preparativ» vid 05.04.2007 roku №167 [Order of the Ministry of Health of Ukraine On approval of guidance «Determination of the sensitivity of microorganisms to antibiotics» from April, 05, 2007, №167]. [in Ukrainian].
Wayne, P. A. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. Clinical and Laboratory Standards Institute. CLSI M2-A9.
Gizatullina, E'. M., & Karcev, V. G. (1993). Annelirovanie 1,2,4-triazol'nogo yadra na osnove α-gidrazinozameshchennykh geterociklov i ikh gidrazonov [Annelation of 1,2,4-triazole nucleus on the basis of α-hydrazino-substituted heterocycles and their hydrazones]. Khimiya geterociklicheskikh soedinenij, 12, 1587–1613 [in Russian].
Karpenko, O. V, & Kovalenko, S. I. (2005). Syntez 2-R-tryazolo[1,5-s]khinazoliniv. Povidomlennia 1. [Synthesis of 2-R-triazolo [1,5-c] quinazoline. Message 1]. Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 3, 2(10), 47–54 [in Ukrainian].
Karpenko, O.V., & Kovalenko, S. I. (2005). Syntez 2-R-tryazolo[1,5-s]khinazoliniv. Povidomlennia 2. [Synthesis of 2-R-triazolo [1,5-c] quinazoline. Message 2]. Zhurnal orhanichnoi ta farmatsevtychnoi khimiyi, 3, 4(12), 61–69 [in Ukrainian].
Zaikin, V. G., Varlamov, A. V., Mikaya, A. I., & Prostakov, N. S. (2001). Osnovy mass-spektrometrii organicheskikh soedinenij [Fundamentals of mass spectrometry of organic compounds]. Moscow: Nauka, Interperiodika [in Russian].
Karpenko, O. V, & Kovalenko, S. I. (2006). Syntez 2-R-tryazolo[1,5-s]khinazoliniv. Povidomlennia 3. [Synthesis of 2-R-triazolo [1,5-c]quinazoline. Message 3]. Zhurnal orhanichnoi ta farmatsevtychnoi khimiyi, 4, 2(14), 65–70 [in Ukrainian].
Voloshyna, V. O. (2011). Syntez, fizyko-khimichni ta biolohichni vlastyvosti zamishchenykh 1,2,4-tryazolu ta yoho kondensovanykh pokhidnykh (Avtoref. dis…kand. farm. nauk) [Synthesis, physico-chemical and biological properties of 1,2,4-triazole substituted and its fused derivatives]. (Extended abstract of candidate’s thesis). Zaporizhzhia [in Ukrainian].
Khausser, K. Kh., & Kal'bitcer, Kh. R. (1993). YAMR v medicine i biologii: struktura molekul, tomografiya, spektroskopiya in vivo [NMR in medicine and biology: molecular structure, tomography, in vivo spectroscopy]. Kyiv: Nauk. dumka [in Russian].
E'rnst R., Bodenkhauzen, Dzh., & Vokaun, A. (1990). YAMR v odnom i dvukh izmereniyakh [NMR in one and two dimensions]. Moscow: Mir [in Russian].
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)