Predicion of the functional outcome of cerebral ischemic supratentorial stroke acute period on the basis of spectral analysis of the brain bioelectrical activity
DOI:
https://doi.org/10.14739/2310-1210.2018.3.132127Keywords:
brain infarction, electroencephalography, prognosisAbstract
The purpose of this study was to determine the most informative parameters of the brain bioelectrical activity spectral analysis for the functional outcome of cerebral ischemic supratentorial stroke (CISS) acute period prediction.
Materials and methods. Prospective, cohort and comparative study was conducted among 103 patients in CISS acute period (61 men and 42 women, mean age was 67.7 ± 0.8 years). Electroencephalographic study was conducted on the 2nd–3rd day of the disease with the use of 19-channel electroencephalographic scanner. The values of absolute spectral rhythm power of delta (0.5–4.0 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–35 Hz), theta1 (4–6 Hz), theta2 (6–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta1 (13–25 Hz) and beta2 (25–35 Hz) bands in the affected hemisphere (AH) and intact hemisphere (IH) were determined. The relative spectral rhythm power (RSRP), fronto-occipital rhythm gradient (FORG) and the severity of interhemispheric rhythm asymmetry (IHRA) were calculated. The functional outcome of the disease acute period was assessed on the 21st day on the basis of the modified Rankin Scale (mRS), while the value of mRS score> 3 was considered as an unfavourable functional outcome.
Results. Unfavourable functional outcome of the CISS acute period was registered in 46 (44.6 %) patients. In accordance with the data of multivariate regression analysis it was determined that RSRP of delta band in the IH (OR 95 % CI = 1.31 (1.13–1.52), P = 0.0004), FORG of alpha band in the AH (OR 95 % CI = 29.07 (1.86–455.15), P = 0.0224) and IHRA of alpha band (OR 95 % CI = 0.01 (0.0001–0.80), P = 0.0402) were independently associated with functional outcome of the CISS acute period. The RSRP of delta band in the IH > 18.4 % (Se = 87.0 %, Sp = 87.7 %, AUC 95 % CI = 0.94 (0.87–0.98), P < 0.0001), FORG of alpha band in the AH >-0.066 (Se = 67.4 %, Sp = 70.0 %, AUC 95 % CI = 0.74 (0.65–0.82), P<0.0001) and IHRA alpha band ≤-0.066 (Se = 60.9 %, Sp = 70.2 % AUC 95 % CI = 0.66 (0.56–0.75), P < 0,0039) were the optimal cut-off values as for the unfavourable functional prognosis of CISS acute period.
Conclusions. The RSRP of delta band in the IH, FORG of alpha band in the AH and the IHRA of alpha band are the most informative parameters of the brain bioelectrical activity spectral analysis for the prediction of the functional outcome of cerebral ischemic supratentorial stroke acute period.
References
Ministerstvo okhorony zdorovia Ukrainy (2012). Unifikovanyi klinichnyi protokol medychnoi dopomohy «Ishemichnyi insult (ekstrena, pervynna, vtorynna (spetsializovana) medychna dopomoha, medychna reabilitatsiia)» [Unified clinical protocol for medical aid "Ischemic stroke (emergency, primary, secondary (specialized) medical aid, medical rehabilitation)"]. Retrieved from http://mtd.dec.gov.ua/images/dodatki/2012_602/2012_602dod4ykpmd.pdf
Ovbiagele, B., Goldstein, L. B., Higashida, R. T., Howard, V. J., Johnston, S. C., Khavjou, O. A., et al. (2013). Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association. Stroke, 44(8), 2361–2375. doi: 10.1161/STR.0b013e31829734f2.
Pearson, T. A., Palaniappan, L. P., Artinian, N. T., Carnethon, M. R., Criqui, M. H., Daniels, S. R., et al. (2013). American Heart Association Guide for Improving Cardiovascular Health at the Community Level, 2013 update: a scientific statement for public health practitioners, healthcare providers, and health policy makers. Circulation, 127(16), 1730–1753. doi: 10.1161/CIR.0b013e31828f8a94.
Esteghamati, A., Hafezi-Nejad, N., Sheikhbahaei, S., Heidari, B., Zandieh, A., & Eslami, V. (2014). Comparing the Predictive Ability of Prognostic Models in Ischemic Stroke; Derivation, Validation, and Discrimination Beyond the ROC Curve. Front Neurol, 5, 9. doi: 10.3389/fneur.2014.00009.
Fahey, M., Crayton, E., Wolfe, C., & Douiri, A. (2018). Clinical prediction models for mortality and functional outcome following ischemic stroke: A systematic review and meta-analysis. PLoS One, 13(1), e0185402. doi: 10.1371/journal.pone.0185402.
Diedler, J., Sykora., M., Bast, T., Poli, S., Veltkamp, R., Mellado, P., et al. (2009). Quantitative EEG correlates of low cerebral perfusion in severe stroke. Neurocrit Care, 11(2), 210–216. doi: 10.1007/s12028-009-9236-
Jordan, K. G. (2004). Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol, 21(5), 341–352.
van Putten, M. J., & Hofmeijer, J. (2016). EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications. J Clin Neurophysiol, 33(3), 203–210. doi: 10.1097/WNP.0000000000000272.
Finnigan, S. P., Rose, S. E., Walsh, M., Griffin, M., Janke, A. L., McMahon, K. L., et al. (2004). Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke, 35(4), 899–903. doi: 10.1161/01.STR.0000122622.73916.d2.
Li, J., Shalabi, A., Ji, F., & Meng, L. (2016). Monitoring cerebral ischemia during carotid endarterectomy and stenting. J Biomed Res, 31(1), 11–16. doi: 10.7555/JBR.31.20150171.
Cuspineda, E., Machado, C., Galán, L., Aubert, E., Alvarez, M. A., Llopis, F., et al. (2007). QEEG prognostic value in acute stroke. Clin EEG Neurosci, 38(3), 155–160. doi: 10.1177/155005940703800312.
Sheorajpanday, R. V., Nagels, G., Weeren, A. J., van Putten, M. J., & De Deyn, P. P. (2009). Reproducibility and clinical relevance of quantitative EEG parameters in cerebral ischemia: a basic approach. Clin Neurophysiol, 120(5), 845–855. doi: 10.1016/j.clinph.2009.02.171.
Sheorajpanday, R. V., Nagels, G., Weeren, A. J., De Surgeloose, D., & De Deyn, P. P. (2010). Additional value of quantitative EEG in acute anterior circulation syndrome of presumed ischemic origin. Clin Neurophysiol, 121(10), 1719–1725. doi: 10.1016/j.clinph.2009.10.037.
Wu, J., Srinivasan, R., Burke Quinlan, E., Solodkin, A., Small, S. L., & Cramer, S. C. (2016). Utility of EEG measures of brain function in patients with acute stroke. J Neurophysiol, 115(5), 2399–2405. doi: 10.1152/jn.00978.2015.
Adams, H. P. Jr., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D. L., & Marsh, E. E. 3rd. (1993). Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke, 24(1), 35–41.
Finnigan, S. P., Walsh, M., Rose, S. E., & Chalk, J. B. (2007). Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol, 118(11), 2525–2532. doi: 10.1016/j.clinph.2007.07.021.
Sheorajpanday, R. V., Nagels, G., Weeren, A. J., van Putten, M. J., & De Deyn, P. P. (2011). Quantitative EEG in ischemic stroke: correlation with functional status after 6 months. Clin Neurophysiol, 122(5), 874–883. doi: 10.1016/j.clinph.2010.07.028.
Xin, X., Chang, J., Gao, Y., & Shi, Y. (2017). Correlation Between the Revised Brain Symmetry Index, an EEG Feature Index, and Short-term Prognosis in Acute Ischemic Stroke. J Clin Neurophysiol, 34(2), 162–167. doi: 10.1097/WNP.0000000000000341.
Assenza, G., Zappasodi, F., Pasqualetti, P., Vernieri, F., & Tecchio, F. (2013). A contralesional EEG power increase mediated by interhemispheric disconnection provides negative prognosis in acute stroke. Restor Neurol Neurosci, 31(2), 177–188. doi: 10.3233/RNN-120244.
Wolf, M. E., Ebert, A. D., & Chatzikonstantinou, A. (2017). The use of routine EEG in acute ischemic stroke patients without seizures: generalized but not focal EEG pathology is associated with clinical deterioration. Int J Neurosci, 127(5), 421–426. doi: 10.1080/00207454.2016.1189913.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)