The role of bariatric surgery and appetite-related hormones metabolism in obesity treatment: a literature review

Authors

  • A. O. Nykonenko Zaporizhzhia State Medical University, Ukraine,
  • Ye. I. Haidarzhi Zaporizhzhia State Medical University, Ukraine,
  • O. S. Nykonenko Zaporizhzhia State Medical University, Ukraine,
  • M. H. Holovko Zaporizhzhia State Medical University, Ukraine,
  • A. S. Protsenko Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2018.6.146775

Keywords:

obesity, bariatric surgery, appetite-regulating hormone

Abstract

The most frequently performed surgical interventions in the treatment of obesity are the laparoscopic sleeve gastrectomy (LSG), laparoscopic greater curve plication (LGCP), laparoscopic Roux-en-Y gastric bypass (RYGB). Along with effective weight loss, these operations lead to changes in the production of appetite-related hormones that play an important role in the endocrine regulation of energy metabolism.

Our aim was to learn the role and interaction of the above-mentioned bariatric operations (LSG, LGCP and RYGB) and appetite-related hormones (ghrelin, leptin, adiponectin) metabolism in obesity treatment using scientific literature data with considering famous obesity surgeons’ point of view.

Materials and Methods. The current review was conducted by searching the following databases in Internet: PubMed, Scopus and Google Scholar, using combination of keywords for the bariatric surgery and appetite-related hormones metabolism.

Results. Our review shows that the above-mentioned surgeries (LSG, LGCP, RYGB), aimed to the treatment of obesity, directly lead to a decrease in body mass index and weight loss and, indirectly, through the adipose tissue function, have different significant effects on energy balance and appetite-related hormones levels. The anatomical and physiological changes described in the review are most likely caused by the above-mentioned surgical procedures.

Conclusions. Nowadays LSG, LGCP and RYGB are the most effective operations in obesity treatment with a strong similarity. There is a close interaction between BMI and fat tissue loss, caused by above-mentioned bariatric surgery, with appetite-related hormones levels. However, the surgical effects on this process in each case have been not enough studied and requires further work in this direction.

References

van Wissen, J., Bakker, N., Doodeman, H. J., Jansma, E. P., Bonjer, H. J., & Houdijk, A. P. J. (2016) Preoperative Methods to Reduce Liver Volume in Bariatric Surgery: a Systemic Review. Obes. Surg., 26(2), 251–256. doi: 10.1007/s11695-015-1769-5.

Arabi Basharic, F., Olyaee Manesh, A., Ranjbar Ezzat Abadi, M., Shiryazdi, S. M., Shabahang, H., & Jangjoo, A. (2016) Evaluation of laparoscopic sleeve gastrectomy compared with laparoscopic Roux-en-Y gastric bypass for people with morbid obesity: A systematic review and meta-analysis. Med. J. Islam. Repub. Iran, 3, 354.

Li, J. F., Lai, D. D., Lin, Z. H., Jiang, T. Y., Zhang, A. M., & Dai, J. F. (2014) Comparison of the long-term results of Roux-en-Y gastric bypass and sleeve gastrectomy for morbid obesity: a systematic review and meta-analysis of randomized and nonrandomized trials. Surg. Laparosc. Endosc. Percutan. Tech., 24(1), 1–11. doi: 10.1097/SLE.0000000000000041.

World Health Organization. Overweight and Obesity. Retrieved from http://www.who.int/mediacentre/factsheets/fs311/en/

Sjöström, L., Lindroos, A. K., Peltonen, M., Torgerson, J., Bouchard, C., Carlsson, B., et al. (2004). Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med., 351(26), 2683–2693. doi: 10.1056/NEJMoa035622.

Sjöström L. (2008) Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int. J. Obes. (Lond)., 32(7), S93–97. doi: 10.1038/ijo.2008.244.

Kwok, C. S., Pradhan, A., Khan, M. A., Anderson, S. G., Keavney, B. D., Myint, P. K., et al. (2014) Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int. J. Cardiol., 173(1), 20–28. doi: 10.1016/j.ijcard.2014.02.026.

Abdelbaki, T. N., Sharaan, M., Abdel-Baki, N. A., & Katri, K. (2014) Laparoscopic gastric greater curvature plication versus laparoscopic sleeve gastrectomy: early outcome in 140 patients. Surgery for Obesity and Related Diseases, 10(6), 1141–1146. doi: 10.1016/j.soard.2014.03.014.

Picot, J., Jones, J., Colquitt, J. L., Gospodarevskaya, E., Loveman, E., Baxter, L., & Clegg, A. J. (2009) The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol. Assess., 13(41), 1–190, 215-357, iii-iv. doi: 10.3310/hta13410.

Torpy, J. M., Lynm, C., & Livingston, E. H. (2012) JAMA patient page. Bariatric surgery. JAMA, 308(11), 1173. 10.1001/2012.jama.11700

Hutcheon, D. A., Byham-Gray, L. D., Marcus, A. F., Scott, J. D., & Miller, M. (2017) Predictors of preoperative weight loss achievement in adult bariatric surgery candidates while following a low-calorie diet for 4 weeks. Surg. Obes. Relat. Dis., 13(6), 1041–1051. doi: 10.1016/j.soard.2016.12.026.

Wang, S., Li, P., Sun, X. F., Ye, N. Y., Xu, Z. K., & Wang, D. (2013) Comparison between laparoscopic sleeve gastrectomy and laparoscopic adjustable gastric banding for morbid obesity: a meta-analysis. Obes. Surg., 23(7), 980–986. doi: 10.1007/s11695-013-0893-3.

Colquitt, J. L., Pickett, K., Loveman, E., & Frampton, G. K. (2014) Surgery for weight loss in adults. Cochrane Database Syst. Rev., 8(8), CD003641 doi: 10.1002/14651858.CD003641.pub4.

Trastulli, S., Desiderio, J., Guarino, S., Cirocchi, R., Scalercio, V., Noya, G., & Parisi, A. (2013) Laparoscopic sleeve gastrectomy compared with other bariatric surgical procedures: a systematic review of randomized trials. Surg. Obes. Relat. Dis., 9(5), 816–829. doi: 10.1016/j.soard.2013.05.007.

Dayer-Jankechova, A., Fournier, P., Allemann, P., & Suter, M. (2016) Complications After Laparoscopic Roux-en-Y Gastric Bypass in 1573 Consecutive Patients: Are There Predictors? Obes. Surg., 26(1), 12–, 26(1), 12–20. doi: 10.1007/s11695-015-1752-1.

doi: 10.1007/s11695-015-1752-1.

Schauer, P. R., Bhatt, D. L., Kirwan, J. P., Wolski, K., Brethauer, S. A., Navaneethan, S. D., et al. (2014) Bariatric surgery versus intensive medical therapy for diabetes: 3-year outcomes. N. Engl. J. Med., 370(21), 2002–2013. doi: 10.1056/NEJMoa1401329.

Engin, A. (2017) Does Bariatric Surgery Improve Obesity Associated Comorbid Conditions. Adv. Exp. Med. Biol., 960, 545–570. doi: 10.1007/978-3-319-48382-5_24.

Manterola, C., Pineda, V., Vial, M., Losada, H., & Muñoz, S. (2005) Surgery for morbid obesity: selection of operation based on evidence from literature review. Obes. Surg., 15(1), 106–113. doi: 10.1381/0960892052993495.

Kissler, H. J., & Settmacher, U. (2013) Bariatric surgery to treat obesity. Semin. Nephrol., 33(1), 75–89. doi: 10.1016/j.semnephrol.2012.12.004.

Reyes-Perez, A., Sanchez-Aguilar, H., Velazquez-Fernandez, D., Rodriguez-Qrtiz, D., Mosti, M., & Herrera, M. F. (2016) Analysis of Causes and Risk Factors for Hospital Readmission After Roux-en-Y Gastric Bypass. Obes. Surg., 26(2), 257–260. doi: 10.1007/s11695-015-1755-y.

Keren, D., Matter, I., & Rainis, T. (2016) Sleeve Gastrectomy in Different Age Groups: a Comparative Study of 5-Year Outcomes. Obes. Surg., 26(2), 289–295. doi: 10.1007/s11695-015-1735-2.

Rosenthal, R. J., Diaz, A. A., Arvidsson, D., Baker, R. S., Basso, N., Bellanger, D., et al. (2012) International sleeve gastrectomy expert panel consensus statement: best practice guidelines based on experience >12000 cases. Surg. Obes. Relat. Dis., 8(1), 8–19. doi: 10.1016/j.soard.2011.10.019.

Li, J., Lai, D., & Wu, D. (2016) Laparoscopic Roux-en-Y Gastric Bypass Versus Laparoscopic Sleeve Gastrectomy to Treat Morbid Obesity – Related Comorbidities: a Systemic Review and Meta-analysis. Obes. Surg., 26(2), 429–442. doi: 10.1007/s11695-015-1996-9.

Mui, W. L., Lee, D. W., Lam, K. K., & Tsung, B. Y. (2013) Laparoscopic greater curve plication in Asia: initial experience. Obes. Surg., 23(2), 179–83. doi: 10.1007/s11695-012-0761-6.

Peterli, R., Borbély, Y., Kern, B., Gass, M., Peters, T., Thurnheer, M., et al. (2013)Early results of the Swiss Multicentre Bypass or Sleeve Study (SM-BOSS): a prospective randomized trial comparing laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Ann. Surg., 258(5), 690–694. doi: 10.1097/SLA.0b013e3182a67426.

Sjöström, L. (2013) Review of the key results from the Swedish Obese Subjects (SOS) trial a prospective controlled intervention study of bariatric surgery. J. Intern. Med., 273(3), 219–234. doi: 10.1111/joim.12012.

Pories, W. J. (2008) Bariatric surgery: risk and rewards. J. Clin. Endocrinol. Metab., 93(11 Suppl 1), S89–96. doi: [10.1210/jc.2008-1641].

Nykonenko, A. O., Haidarzhi, Ye. I., & Bužga, M. (2016) Bone Metabolism Changes after Laparoscopic Greater Curvature Plication. A One-Year Study. Zaporozhye medical journal, 2(95), 64–69. doi: 10.14739/2310-1210.2016.2.69234.

Cummings, D. E., Weigle, D. S., Frayo, R. S., Breen, P. A., Ma, M. K., Dellinger, E. P., & Purnell, J. Q. (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med., 346(21), 1623–1630. doi: 10.1056/NEJMoa012908.

Rodieux, F., Giusti, V., DʼAlessio, D. A., Suter, M., & Tappy, L. (2008) Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring), 16(2), 298–305. doi: 10.1038/oby.2007.83.

Foschi, D., Corsi, F., Colombo, F., Vago, T., Bevilaqua, M., Rizzi, A., & Trabucchi, E. (2008) Different effects of vertical banded gastroplasty and Roux-en-Y gastric bypass on meal inhibition of ghrelin secretion in morbidly obese patients. J. Invest. Surg., 21(2), 77–81. doi: 10.1080/08941930701883624.

Faraj, M., Havel, P. J., Phelis, S., Blank, D., Sinderman, A. D., & Cianflone, K. (2003) Plasma acylation-stimulation protein, adiponectin, leptin and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab., 88(4), 1594–1602. doi: 10.1210/jc.2002-021309.

Karamanakos, S. N., Vagenas, K., Kalfarentzos, F., & Alexandrides, T. K. (2008) Weight loss, appetite suppression and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann. Surg., 247(3), 401–407. doi: 10.1097/SLA.0b013e318156f012.

Pournaras, D. J., & le Roux, C. W. (2010) Ghrelin and metabolic surgery. Int. J. Pept., 2010, 217267. doi: [10.1155/2010/217267].

Abdeen, G., & le Roux, C. W. (2016) Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass. Review. Obes. Surg., 26(2), 410–421. doi: 10.1007/s11695-015-1945-7.

Field, B. C. (2014) Neuroendocrinology of obesity. Br. Med. Bull., 109, 73–82. doi: 10.1093/bmb/ldu001.

Yu, J. H., & Kim, M. S. (2012) Molecular mechanisms of appetite regulation. Diabetes Metab. J., 36(6), 391–398. doi: 10.4093/dmj.2012.36.6.391.

(2006) Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil. Steril., 85(6), 1563–1581. doi: 10.1016/j.fertnstert.2005.09.065.

Henry, B.A., & Clarke, I. J. (2008) Adipose tissue hormones and the regulation of food intake. J. Neuroendocrinol., 20(6), 842–849. doi: 10.1111/j.1365-2826.2008.1730.x.

Baratta, M. (2002) Leptin–from a signal of adiposity to a hormone mediator in peripheral tissues. Med. Sci. Monit., 8(12), 282–292.

Webber, J. (2003) Energy balance in obesity. Proc. Nutr. Soc., 62(2), 539–543.

El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjorback, C., & Flier, J. S. (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest., 105(12), 1827–1832. 10.1172/JCI9842

Trayhurn, P., Hoggard, N., Mercer, J. G., & Rayner, D. V. (1999) Leptin: fundamental aspects. Int. J. Obes. Relat. Metab. Disord., 23(Suppl 1), 22–8.

Margetic, S., Gazzola, C., Pegg, G. G., & Hill, R. A. (2002) Leptin: a review of its peripheral actions and interactions. Int. J. Obes. Relat. Metab. Disord., 26(1), 1407–1433. doi: 10.1038/sj.ijo.0802142.

Liberale, L., Bonaventura, A., Carbone, F., Bertolotto, M., Contini, P., Scopinaro, N., et al. (2017) Early reduction of matrix metalloproteinase-8 serum levels is associated with leptin drop and predicts diabetes remission after bariatric surgery. Int. J. Cardiol., 245, 257–262. doi: 10.1016/j.ijcard.2017.07.044.

Tamez, M., Ramos-Barragan, V., Mendoza-Lorenzo, P., Arrieta-Joffe, P., López-Martínez, S., Rojano-Rodríguez, M. E., et al. (2017) Adipocyte Size and Leptin Receptor Expression in Human Subcutaneous Adipose Tissue After Roux-en-Y Gastric Bypass. Obes. Surg., 27(12), 3330–3332. doi: 10.1007/s11695-017-2930-0.

Müller, T. D., Nogueiras, R., Andermann, M. L., Andrews, Z. B., Anker, S. D., Argente, J., et al. (2015) Ghrelin. Mol. Metab., 4(6), 437–460. doi: 10.1016/j.molmet.2015.03.005.

Greenway, F. L. (2015) Physiological adaptations to weight loss and factors favouring weight regain. Int. J. Obes. (Lond), 39(8), 1188–1196. doi: 10.1038/ijo.2015.59.

Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., & Kangawa, K. (1999) Ghrelin is a growth-hormonereleasing acylated peptide from stomach. Nature, 402(6762), 656–660. doi: 10.1038/45230.

Hosoda H., Kojima M., Mitzushima T., Shimizu S., Kangawa K. (2003) Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by posttranslational processing. J. Biol. Chem., 278(1), 67–70. doi: 10.1074/jbc.M205366200.

Delhanty, P. J., Neggers, S. J., & van der Lely, A. J. (2014) Should we consider des-acyl ghrelin as a separate hormone and if so, what does it do? Front. Horm. Res., 42, 163–174. doi: 10.1159/000358345.

Callaghan, B., & Furness, J. B. (2014) Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacol. Rev., 66(4), 984–1001. doi: 10.1124/pr.113.008433.

Casanueva, F. F., & Dieguez, C. (2002) Ghrelin: the link connecting growth with metabolism and energy homeostasis. Rev. Endocrinol. Metab. Disord., 3(4), 326–338. doi: 10.1023/A:1020901624103.

Drazen, D. L., & Woods, S. C. (2003) Peripheral signals in the control of satiety and hunger. Curr. Opin. Clin. Nutr. Metab. Care, 6(6), 621–629. doi: 10.1097/01.mco.0000098085.40916.56.

Gualillo, O., Lago, F., Gomez-Reino, J., Casanueva, F. F., & Dieguez, C. (2003) Ghrelin, a widespread hormone: insights into molecular and cellular regulation of its expression and metabolism of action. FEBS Lett., 552(2–3), 105–109. doi: 10.1016/S0014-5793(03)00965-7.

Zigman, J. M., & Elmquist, J. K. (2003) Minireview: from anorexia to obesity – the yin and yang of body weight control. Endocrinology, 144(9), 3749–3756. doi: 10.1210/en.2003-0241.

Holdstock, C., Engstrom, B.E., Ohrvall, M., Lind, L., Sundbom, M., & Karlsson, F. A. (2003) Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J. Clin. Endocrinol. Metab., 88(7), 3177–3183. doi: 10.1210/jc.2002-021734.

Hagemann, D., Meier, J. J., Gallwitz, B., & Schmidt, W. E. (2003) Appetite regulation by ghrelin—a novel neuro-endocrine gastric peptide hormone in the gut-brain-axis. Z. Gastroenterol., 41(9), 929–936. doi: 10.1055/s-2003-41853.

Wu, J. T., & Kral, J. G. (2004) Ghrelin: integrative neuroendocrine peptide in health and disease. Ann. Surg., 239(4), 464–474. doi: [10.1097/01.sla.0000118561.54919.61].

Ukkola, O. (2003) Endocrinological activities of ghrelin: new insights. Eur. J. Intern. Med., 14(6), 351–356. doi: https://doi.org/10.1016/S0953-6205(03)90000-8.

Berg, A. H., Combs, T. P., & Scherer, P. E. (2002) ACRP 30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab., 13(2), 84–89. 10.1016/S1043-2760(01)00524-0.

Shapiro, L., & Scherer, P. E. (1998) The crystal structure of a complement-1qfamily protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol., 8(6), 335–8.

Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., et al. (2003) Cloning of adiponectin receptors that mediate anti-diabetic metabolic effects. Nature, 423(6941), 762–769. doi: 10.1038/nature01705.

Meier, U., & Gressner, A. M. (2004) Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin. Clinical Chemistry, 50(9), 1511–1525. doi: 10.1373/clinchem.2004.032482.

Spranger, J., Kroke, A., Möhlig, M., Bergmann, M. M., Ristow, M., Boeing, H., & Pfeiffer, A. F. (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet, 361(9353), 226–228. doi: 10.1016/S0140-6736(03)12255-6.

Goldfine, A., & Kahn, C. R. (2003) Adiponectin: linking the fat cell to insulin sensitivity. Lancet, 362(9394), 1431–1432. doi: 10.1016/S0140-6736(03)14727-7.

Ravussin, E., & Smith, S. R. (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci., 967(1), 363–378. doi: 10.1111/j.1749-6632.2002.tb04292.x.

Matsuzawa, Y., Funahashi, T., Kihara, S., & Shimomura, I. (2004) Adiponectin and metabolic syndrome. Arterioscler. Thromb. Vasc. Biol., 24(1), 29–33. doi: 10.1161/01.ATV.0000099786.99623.EF.

Heilbronn, L. K., Campbell, L. V., Xu, A., & Samocha-Bonet, D. (2013) Metabolically protective cytokines adiponectin and fibroblast growth factor-21 are increased by acute overfeeding in healthy humans. PLoS One, 8(10), e78864. doi: 10.1371/journal.pone.0078864.

Cahill, F., Amini, P., Wadden, D., Khalili, S., Randell, E., Vasdev, S., et al. (2013) Short-term overfeeding increases circulating adiponectin independent of obesity status. PLoS One, 8(8), e74215. doi: [10.1371/journal.pone.0074215].

Tam, C. S., Covington, J. D., Bajpeyi, S., Tchoukalova, Y., Burk, D., Johannsen, D. L., et al. (2014) Weight gain reveals dramatic increases in skeletal muscle extracellular matrix remodeling. J. Clin. Endocrinol. Metab., 99(5), 1749–1757. doi: 10.1210/jc.2013-4381.

Singh, P., Sharma, P., Sahakyan, K. R., Davison, D. E., Sert-Kuniyoshi, F. H., Romero-Corral, et al. (2016) Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int. J. Obes. (Lond), 40(2), 266–274. doi: 10.1038/ijo.2015.181.

El-Geidie, A., & Gad-el-Hak, N. (2014) Laparoscopic gastric plication: technical report. Surg. Obes. Relat. Dis., 10(1), 151–154. doi: 10.1016/j.soard.2013.04.014.

Darido, E., & Moore, J. R. (2014) Comparison of gastric fundus invagination and gastric greater curvature plication for weight loss in a rat model of diet-induced obesity. Obes. Surg., 24(6), 897–902. doi: 10.1007/s11695-014-1181-6.

Brethauer, S. A., Harris, J. L., Kroh, M., & Schauer, P. R. (2011) Laparoscopic gastric plication for treatment of severe obesity. Surgery for Obesity and Related Diseases, 7(1), 15–22. doi.org/10.1016/j.soard.2010.09.023.

Talebpour, M., Sadid, D., Talebpour, A., Sharifi, A., & Davari, F. V. (2018). Comparison of Short-Term Effectiveness and Postoperative Complications: Laparoscopic Gastric Plication vs Laparoscopic Sleeve Gastrectomy. Obes. Surg., 28(4), 996–1001. doi: 10.1007/s11695-017-2951-8.

Currò, G., Piscitelli, G., Lazzara, C., Komaei, I., Fortugno, A., Pinto, G., et al. (2017) Laparoscopic sleeve gastrectomy for morbid obesity: role of intraluminal and intraperitoneal postoperative drainage. G. Chir., 38(4), 181–184. doi: [10.11138/gchir/2017.38.4.181].

Akusoba, I., Birriel, T. J., & El Chaar, M. (2016) Management of Excessive Weight Loss Following Laparoscopic Roux-en-Y Gastric Bypass: Clinical Algorithm and Surgical Techniques. Obes. Surg., 26(1), 5–11. doi: 10.1007/s11695-015-1775-7.

De La Cruz-Muñoz, N., Lopez-Mitnik, G., Arheart, K. L., Miller, T. L., Lipshultz, S. E., & Messiah, S. E. (2013) Effectiveness of bariatric surgery in reducing weight and body mass index among Hispanic adolescents. Obes. Surg., 23(2), 150–156. doi: 10.1007/s11695-012-0730-0.

Khidir, N., Al Dhaheri, M., El Ansari, W., Al Kuwari, M., Sargsyan, D., & Bashah, M. (2017) Outcomes of Laparoscopic Gastric Greater Curvature Plication in Morbidly Obese Patients. J. Obes., 2017, 1–6. doi: 10.1155/2017/7989714.

Kehagias, I., Karamanakos, S. N., Argentou, M., & Kalfarentzos, F. (2011) Randomized clinical trial of laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the management of patients with BMI < 50 kg/m2. Obes. Surg., 21(11), 1650–1656. doi: 10.1007/s11695-011-0479-x.

Karamanakos, S. N., Vagenas, K., Kalfarentzos, F., & Alexandrides, T. K. (2008) Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann. Surg., 247(3), 401–7. doi: 10.1097/SLA.0b013e318156f012.

Woelnerhanssen, B., Peterli, R., Steinert, R. E., Peters, T., Borbély, Y., & Beglinger, C. (2011) Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy--a prospective randomized trial. Surg. Obes. Relat. Dis., 7(5), 561–568. doi: 10.1016/j.soard.2011.01.044.

Peterli, R., Steinert, R. E., Woelnerhanssen, B., Peters, T., Christoffel-Courtin, C., Gass, M., et al. (2012) Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes. Surg., 22(5), 740–748. doi: 10.1007/s11695-012-0622-3.

Brethauer, S. A., Harris, J. L., Kroh, M., & Schauer, P. R. (2011) Laparoscopic gastric plication for treatment of severe obesity. Surg. Obes. Relat. Dis., 7(1), 15–22. doi: 10.1016/j.soard.2010.09.023.

Atlas, H., Yazbek, T., Garneau, P. Y., Safa, N., & Denis, R. (2013) Is there a future for Laparoscopic Gastric Greater Curvature Plication (LGGCP)? a review of 44 patients. Obes. Surg., 23(9), 1397–1403. doi: 10.1007/s11695-013-0934-y.

Wroblewski, E., Swidnicka-Siergiejko, A., Hady, H. R., Luba, M., Konopko, M., Kurek, K., et al. (2016) Variation in blood levels of hormones in obese patients following weight reduction induced by endoscopic and surgical bariatric therapies. Cytokine, 77, 56–62. doi: 10.1016/j.cyto.2015.10.013.

Bužga, M., Zavadilová, V., Holéczy, P., Švagera, Z., Švorc, P., Foltys, A., & Zonča, P. (2014) Dietary intake and ghrelin and leptin changes after sleeve gastrectomy. Videosurgery Miniinv., 9(4), 554–561. doi: 10.5114/wiitm.2014.45437.

Bužga, M., Holéczy, P., Švagera, Z., & Zonča, P. (2015) Laparoscopic gastric plication and its effect on saccharide and lipid metabolism: a 12-month prospective study. Videosurgery Miniinv., 10(3), 398–405. doi: 10.5114/wiitm.2015.54103.

Ramón, J. M., Salvans, S., Crous, X., Puig, S., Goday, A., Benaiges, D., et al. (2012) Effect of Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy on Glucose and Gut Hormones: a Prospective Randomised Trial. J. Gastrointest. Surg., 16(6), 1116–22. doi: 10.1007/s11605-012-1855-0.

Kalinowski, P., Paluszkiewicz, R., Wróblewski, T., Remiszewski, P., Grodzicki, M., Bartoszewicz, Z., & Krawczyk, M. (2017) Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass-results of a randomized clinical trial. Surg. Obes. Relat. Dis., 13(2), 181–188. doi: 10.1016/j.soard.2016.08.025.

Eickhoff, H. (2017) Central Modulation of Energy Homeostasis and Cognitive Performance After Bariatric Surgery. Adv. Neurobiol., 19, 213–236. doi: 10.1007/978-3-319-63260-5_9.

Downloads

How to Cite

1.
Nykonenko AO, Haidarzhi YI, Nykonenko OS, Holovko MH, Protsenko AS. The role of bariatric surgery and appetite-related hormones metabolism in obesity treatment: a literature review. Zaporozhye medical journal [Internet]. 2019Feb.1 [cited 2024Apr.16];(6). Available from: http://zmj.zsmu.edu.ua/article/view/146775

Issue

Section

Review