8-isoprostane as the main marker of oxidative stress

Authors

  • N. M. Herasymchuk Kharkiv National Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2018.6.146780

Keywords:

oxidative stress, arachidonic acid, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes mellitus, glomerulonephritis, female infertility

Abstract

The purpose is to generalize the data of experimental and clinical studies which have established that the basis of main metabolic processes in humans are redox reactions. Among them, free-radical reactions, leading to the formation of peroxide compounds, play a special role. Thus, it is important to determine the parameters of oxidative stress, its intensity that is necessary for an adequate assessment of the body compensatory capabilities, the prognosis of the disease course and the effectiveness of the treatment received.

Material and methods. The article describes the definition of the notion of oxidative stress, lists the most important oxidants and the mechanisms of their damaging effects. The role of oxidative stress in a number of cardiovascular, pulmonary and neurological diseases pathogenesis has been discussed, and oxidative processes activation during oocyte maturation in the follicular fluid has been shown.

Isoprostanes is a group of prostaglandin isomers which was discovered not long ago. The author of this article shows the metabolism of arachidonic acid as the most widespread and important precursor of eicosanoids, whose family includes isoprostanes.

Isoprostanes appear in tissues and blood plasma as a consequence of membrane oxidative degradation, reflecting the change in the membranes integrity and fluidity under OS conditions. They are present in biological fluids, such as urine, blood, cerebrospinal fluid, and in exhaled air under normal conditions, increasing as OS occurs.

8-isoprostane is isomeric to prostaglandin F2 allowing to estimate the level of free radicals production with a sufficient degree of accuracy, reliability and reproduction of the study results and its amount is directly related to the level of free radicals formed.

Conclusions. The results of previous studies have shown that the determination of 8-iso-PgF2α level serves as the gold standard for determining the activity of oxidative stress in persons with the diseases described, as well as in patients with diabetes mellitus, obesity, hypercholesterolemia and in smokers.

References

Kovalyova, O. N., Ashcheulova, T. V., Gerasimchuk, N. N., & Safargalina-Kornilova, N. А. (2015). Rol' oksidativnogo stressa v stanovlenii i progressirovanii gipertonicheskoj bolezni [Role of oxidative stress in the formation and progression of hypertensive diseas]. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Medicina Farmaciya, 4(201), 29, 5–10. [in Russian].

Czerska, M., Zieliński, M. & Gromadzińska, J. (2016). Isoprostanes - A novel major group of oxidative stress markers. International Journal of Occupational Medicine and Environmental Health, 29(2), 179–90. doi: 10.13075/ijomeh.1896.00596.

Huiyong, Y. (2008). New techniques to detect oxidative stress markers: Mass spectrometry-based methods to detect isoprostanes as the gold standard for oxidative stress in vivo. Bio Factors, 34(2), 109–124. doi: 10.1002/biof.5520340203.•

Czerska, M., Mikołajewska, K., Zieliński, M., Gromadzińska, J. & Wąsowicz, W. (2015). Today’s oxidative stress markers. Medycyna Pracy, 66(3), 393–405. doi: 10.13075/mp.5893.00137.

Montuschi, P. (2013). Measurement of Biomarkers of Oxidative Stress and Airway Inflammation in Exhaled Breath Condensate: Methodology and Potential Applications in Patients with COPD and Healthy Smokers. Volatile Biomarkers, 360–381. doi: 10.1016/B978-0-44-462613-4.00019-2}.

Taylor, D. R. (2011). Using biomarkers in the assessment of airways disease. Journal of Allergy and Clinical Immunology, 128(5), 927–934. doi: 10.1016/j.jaci.2011.03.051.

Antczak, A., Ciebiada, M., Pietras, T., Piotrowski, W., Kurmanowska, Z. & Górski, P. (2012). Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Archives of Medical Science, 8(2), 277–85. doi: 10.5114/aoms.2012.28555.

Anaev, E. Kh., Anokhina, T. N., Kushaeva, M. E., & Chuchalin, A. G. (2013). Neinvazivnye biomarkery khronicheskoj obstruktivnoj bolezni legkikh [Non invasive biomarkers of chronic obstructive pulmonary disease]. Pul'monologiya, 3, 97–104. [in Russian].

Baraldi, E., Carraro, S., Alinovi, R., Pesci, A., Ghiro, L., Bodini, A., et al. (2003). Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax, 58(6), 505–509.

Montuschi, P., Kharitonov, S. A., Ciabattoni, G., Corradi, M., Van Rensen, L., Geddes, D. M., et al. (2000). Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax, 55(3), 205–209. doi: [10.1136/thorax.55.3.205].

Miller, E., Morel, A., Saso, L. & Saluk J. (2014). Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2014, 572491. doi: 10.1155/2014/572491.

Chen, L. & Liu, B. (2017). Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Disease. Oxidative Medicine and Cellular Longevity, 2017, 1–10. doi: 10.1155/2017/1809592.

Souvignet, C., Cracowski, J. L., Stanke-Labesque, F. & Bessard, G. (2000). Are Isoprostans a Clinical Marker for Antioxidant Drug Investigation. Fundamental & Clinical Pharmacology, 14(1), 1–10. https://doi.org/10.1111/j.1472-8206.2006.00466.x

Ndisang, J. F., Vannacci, A., & Rastogi S. (2014). Oxidative Stress and Inflammation in Obesity, Diabetes, Hypertension, and Related Cardiometabolic Complications. Oxidative Medicine and Cellular Longevity, 2014, 506948. doi: 10.1155/2014/506948.

Zaika, M. V. & Kovalyova, O. N. (2006). 8-izoprostan, kak marker oksidativnogo stressa u pacientov s hronicheskoj serdechnoj nedostatochnost'ju [8-isoprostane as a marker of oxidative stress in patients with chronic heart failure]. Ukrainskyi kardіolohіchnyi zhurnal, 4, 55–57. [in Russian].

Kameda, K., Matsunaga, T., Abe, N., Hanada, H., Ishizaka, H., Ono, H., et al. (2003). Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease. European Heart Journal, 24(24), 2180–2185. doi.org/10.1016/j.ehj.2003.09.022.

Gerasimchuk, N. N., & Коvаlyovа, О. N. (2007). Uroven' 8-izoprostana v dinamike kombinirovannoj antigipertenzivnoj terapii u bol'nykh s izbytochnoj massoj tela [Plasma level 8-isoprostane in the dynamics of combined antihypertensive therapy in patients with excessive body mass]. Ukrainskyj terapevtychnyj zhurnal, 2, 26–31. [in Russian].

Kovalyova, O. N., Ashcheulova, T. V. & Gerasimchuk, N. N. (2015). Vzaimosvyaz immunnoj aktivacii i oksidativnogo stressa u bol'nykh gipertonicheskoj boleznyu i ikh korrekciya kombinirovannoj antigipertenzivnoj terapiej [Relationship of immune activation and oxidative stress in patients with hypertension and their correction combined antihypertensive therapy]. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Medicina Farmaciya, 16(213), 31, 52–59. [in Russian].

Ashcheulova, T. & Gerasimchuk, N. (2016). Relationships of oxidative stress and systemic inflammation markers depending on the degree and duration of hypertension. Visnyk of Dnipropetrovsk University. Biology, medicine, 7(2), 118–122. doi: https://doi.org/10.15421/021621.

Elesber, A. A., Best P. J., Lennon R. J. & Mathew, V. (2006). Plasma 8-iso-prostaglandin F2alpha, a marker of oxidative stress, is increased in patients with acute myocardial infarction. Free Radical Research, 40(4), 385–391. doi: 10.1080/10715760500539154.

Keaney, J. F., Larson, M. G., Vasan, R. S., Wilson, P. W. F., Lipinska, I., Corey, D., et al. (2003). Obesity and systemic oxidative stress: Clinical correlates of oxidative stress in the Framingham Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 434–439. doi: 10.1161/01.ATV.0000058402.34138.11.

Davì, G., Guagnano, M. T., Ciabattoni, G., Basili, S., Falco, A., Marinopiccoli, M., et al. (2002). Platelet activation in obese women. Role of inflammation and oxidant stress. The Journal of the American Medical Association., 288(16), 2008–2014. doi.org/10.1001/jama.288.16.2008

Decideri, G. & Ferry, C. (2003). Effects of obesity and weight loss on soluble CD 40 L levels. The Journal of the American Medical Association, 289(14), 1781–1782. doi: 10.1001/jama.289.14.1781.

Davi, G., Alessandrini, P., Mezzetti, A., Minotti, G., Bucciarelli, T., Costantini, F. et al. (1997). In vivo formation of 8-epi-PGF2 is increased in hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 3230–3235. doi: 10.1161/01.ATV.17.11.3230}.

Reilly, M. P., Praticò, D., Delanty, N., Diminno, G., Tremoli, E., Rader, D. et al. (1998). Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation, 98, 2822–2828. doi.org/10.1161/01.cir.98.25.2822.

Obata, T., Tomaru, K., Nagakura, T., Izumi, Y. & Kawamoto, T. (2000). Smoking and oxidant stress: Assay of isoprostane in human urine by gas chromatography-mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 746(1), 11–15. doi: 10.1016/S0378-4347(00)00182-1.

Gopaul, N. K., Anggard, E. E., Mallet, A. I., Betteridge, D. J., Wolff , S. P., & Nouroo-Zadeh, J. (1995). Plasma 8-epi-PGF2α levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Letters, 368(2), 225–229. doi.org/10.1016/0014-5793(95)00649-t.

Davì, G., Ciabattoni, G., Consoli, A., Mezzetti, A., Falco, A., Santarone, S., et al. (1999). In vivo formation of 8-iso-prostaglandin F2α and platelet activation in diabetes mellitus: Effect of improved metabolic control and vitamin E supplementation. Circulation, 99(2), 224–229. doi.org/10.1161/01.cir.99.2.224.

Cracowski, J. L., Durand, T. & Bessard, G. (2002). Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends in Pharmacological Sciences, 23(8), 360–3. doi: 10.1016/S0165-6147(02)02053-9.

Davì, G., Chiarelli, F., Santilli, F., Pomilio, M., Vigneri, S., Falco, A., et al. (2003). Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: Role of interleukin-6 and disease duration. Circulation, 107, 3199–3203. doi: 10.1161/01.CIR.0000074205.17807.D0.

Dorosh, E. G. & Kravchun, N. A. (2013). Uroven' 8-izoprostaglandina i ego vzaimosvyaz' s metabolicheskimi pokazatelyami u bol'nykh sakharnym diabetom 2-go tipa v sochetanii s nealkogol'noj zhirovoj bolezn'yu pecheni [8-Iso-prostaglandin level and its relation to metabolic parameters in patients with type 2 diabetes mellitus in combination with non-alcoholic fatty liver disease]. Prakticheskaya medicina, akusherstvo, ginekologiya, e'ndokrinologiya, 7(76), 111–116. [in Russian].

Сiuntu, A. (2016). Сoncentration of isoprostane-8 in the urine of children with glomerulonephritisIS. Iscience.in.ua. Aktual'nye nauchnye issledovaniya v sovremennom mire – iscience.in.ua, 12(20), 110–115.

Scherbina, M. & Gradil, O. (2014). Suchasni aspekty provedennia ovarial'noi stymuliatsii v umovakh okysliuvalnoho stresu [The modern aspects IVF the background of oxidative stress]. Naukovyi visnyk mizhnarodnoho humanitarnoho universytetu, 8, 31–34. [in Ukrainian].

Hartman, T. J., Baer, D. J., Graham, L. B., Stone, W. L., Gunter, E. W., Parker, C. E., et al. (2005). Moderate alcohol consumption and levels of antioxidant vitamins and isoprostanes in postmenopausal women. European Journal of Clinical Nutrition, 59, 161–168. doi: 10.1038/sj.ejcn.1602051

Downloads

How to Cite

1.
Herasymchuk NM. 8-isoprostane as the main marker of oxidative stress. Zaporozhye Medical Journal [Internet]. 2019Feb.1 [cited 2024Nov.23];(6). Available from: http://zmj.zsmu.edu.ua/article/view/146780

Issue

Section

Review