An in-depth study of the antimicrobial spectrum activity of a number of new phosphonium derivatives of naphthalene

Authors

  • A. V. Humenna Bukovinian State Medical University, Chernivtsi, Ukraine,
  • D. V. Rotar Bukovinian State Medical University, Chernivtsi, Ukraine,
  • N. D. Yakovychuk Bukovinian State Medical University, Сhernivtsi, Ukraine,
  • O. O. Blinder Bukovinian State Medical University, Chernivtsi, Ukraine,
  • S. Ye. Deineka Bukovinian State Medical University, Chernivtsi, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2019.3.169099

Keywords:

phosphonium salts, antimicrobial activity, naphtalenes, antibacterial agents

Abstract

 

An intensive use of antibiotics and antiseptics is a part of modern principles of treatment and prevention of infectious diseases. Excessive and uncontrolled use leads to the emergence of antibiotic-resistant strains of microorganisms, which necessitates the search for new antimicrobial alternatives. The study of phosphonium derivatives of naphthalene is one of the promising directions for the detection of new highly active antimicrobial agents.

Objective – to determine the antimicrobial effect of phosphonium derivatives of naphthalene on the extended spectrum of archival test strains.

Materials and methods. The phosphonium derivatives of naphthalene were investigated. For a detailed study of their antibacterial and antifungal activity, 14 test-cultures of archival strains of Gram-positive and Gram-negative bacteria belonging to different taxonomic groups and yeast-like fungi of the genus Candida were selected. Experiments for the biological activity of phosphonium derivatives of naphthalene determination were carried out by using a micromethod with disposable polystyrene plates and Takatsy microtitrator.

Result. Phosphonium derivatives of naphthalene showed high antimicrobial activity against Gram-positive microorganisms and vegetative cells of spore-forming bacilli. Their minimal inhibitory concentrations (MIC) for Gram-positive bacteria (S. aureus 209, M. luteus ATCC 3941) ranged from 0.97 mcg/ml to 3.90 mcg/ml, and for vegetative cells of spore-forming bacilli (B. cereus ATCC 10 702) was 3.90 mcg/ml. They showed a slightly lower antimicrobial activity against Gram-negative strains of microorganisms (MIC ranged from 31.2 mcg/ml to 250.0 mcg/ml). The tested compounds showed a moderate antifungal activity against C. utilis LIA-01 (MIC ranged from 31.2 mcg/ml to 62.5 mcg/ml).

Conclusions. It has been established that investigated phosphonium derivatives of naphthalene revealed high biological activity against Gram-positive microorganisms. Both studied compounds showed moderate antimicrobial activity against Gram-negative microorganisms and yeast-like fungi of the genus Candida.

 

References

Cassir, N., Rolain, J.M., & Brouqui, P. (2014). A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Frontiersin Microbiology, 5, 551. doi: 10.3389/fmicb.2014.00551

Aziz, A. M. (2013). The role of healthcare strategies in controlling antibiotic resistance. British Journal of Nursing, 22(18), 1066–1074. doi: 10.12968/bjon.2013.22.18.1066

Cully, M. (2014). Antibacterial drugs: Redesigned antibiotic combats drug-resistant tuberculosis. Nature Reviews. Drug Discovery, 13(4), 256. doi: 10.1038/nrd4287

Humenna, A. V. (2016). Khimioterapevtychna efektyvnist heterotsyklichnoi fosfoniievoi spoluky z pirymidynovym tsyklom na modeli heneralizovanoi stafilokokovoi infektsii [Chemotheraphy efficiency of phosphonium heterocyclic compounds with pyrimidine cycle in models of generalized staph infection]. Aktual'naya infektologiya, 1, 29-31. [in Ukrainian].

Shevchuk, N. M. (2013). Doslidzhennia formuvannia stiikosti u stafilokokiv ta esherykhii do antyseptykiv [Research of formation of resistance of staphylococci and escherichia to antiseptics]. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu, 17(1), 33–36.[in Ukrainian].

Desai, Sh., Laddi, U., Bennur, R., & Bennur, Sh.(2013). Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Indian Journal of Chemistry, 52(8), 1176–1181.

Tang, R., Jin, L., Mou, C., Yin, J., Bai, S., Hu, D.,et al. (2013).Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chemistry Central Journal, 7(1), 30. doi: 10.1186/1752-153X-7-30

Jacob, H. J., Irshaid, F. I., & Al-Soud, Y. A. (2013).Antibacterial activity of some selected 1,2,4-triazole derivatives against standard, environmental, and medicalbacterials trains. Advanced Studies in Biology, 5(6), 291–301. doi: http://dx.doi.org/10.12988/asb.2013.3418

Popiołek, Ł., Kosikowska, U., Mazur, L., Dobosz, M., & Malm, A.(2013). Synthesis and antimicrobial evaluation of some novel 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Medicinal Chemistry Research, 22(7), 3134–3147. doi: 10.1007/s00044-012-0302-9

Patil, B. S., Krishnamurthy, G., Lokesh, M. R., Shashikumar, N. D., Naik, H., Latthe, P. R., & Ghate M. (2013). Synthesis of some novel 1,2,4-triazole and 1,3,4-oxadiazole derivatives of biological interest. Medicinal Chemistry Research, 22(7), 3341–3349. doi: 10.1007/s00044-012-0332-3

Listvan, V. M., Listvan, V. V., Malishevska, A. V., Deineka, S. Ye. (2008). Fosfoniievi soli yak potentsiini antymikrobni zasoby [Phosphonium salts as a potential antimicrobial facilities]. Visnyk Zhytomyrskoho derzhavnoho universytetu, 41, 228–232. [in Ukrainian].

Xue, Y., Xiao, H., & Zhang, Y. (2015). Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. International Journal of Molecular Sciences, 16(2), 3626–3655. doi: 10.3390/ijms16023626

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for invitro evaluatin gantimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. doi: 10.1016/j.jpha.2015.11.005

Nakaz MOZ Ukrainy «Pro zatverdzhennia metodychnykh vkazivok «Vyznachennia chutlyvosti mikroorhanizmiv do antybakterialnykh preparativ» [Order of the Ministry of Health of Ukraine «Onapproval of the methodological guidelines “Determination of microorganism sensitivity to antibacterial drugs”»]. Retrieved from http://ua-info.biz/legal/baselw/ua-qmwjae/index.htm [in Ukrainian].

Gumenna, A. V., Rotar, D. V., Dejneka, S. Ye., Yakovychuk, N. D., & Blinder, О. О. (2017). Pohlyblene vyvchennia spektra antymikrobnoi aktyvnosti riadu novykh kondensovanykh bahatoiadernykh areniv [Detailed studying of the spectrum of antimicrobial activity of several new condensedpolynuclear arens]. Zaporozhye medical journal, 19(3), 369–372. [in Ukrainian]. doi: 10.14739/2310-1210.2017.3.100939

Khasiyatullina, N. R., Vazykhova, A. M., Mironov, V. F., Krivolapov, D. B., Voronina, Y. K., Voloshina, A. D., et al. (2017). Phosphonium salts with a dihydroxynaphthyl substituent: versatile synthesis and evaluation of antimicrobial activity. Mendeleev Communicationsц, 27(2), 134–136. doi 10.1016/j.mencom.2017.03.008

Pugachev, M. V., Shtyrlin, N. V., Sapozhnikov, S. V., Sysoeva, L. P., Iksanova, A. G., Nikitina, E. V., et al.. (2013). Bis-phosphonium salts of pyridoxine: the relationship between structure and antibacterial activity. Bioorg Med Chem, 21(23), 7330–7342. doi: 10.1016/j.bmc.2013.09.056

Pugachev, M. V., Shtyrlin, N. V., Sysoeva, L. P., Nikitina, E. V., Abdullin, T. I., Iksanova, A. G., et al. (2013). Synthesis and antibacterial activity of novel phosphonium salts on the basis of pyridoxine. Bioorganic and Medicinal Chemistry, 21(14), 4388–4395. doi: 10.1016/j.bmc.2013.04.051

Gorbunova, M. (2013). Novel guanidinium and phosphonium polysulfones : synthesis and antimicrobial activity. Journal of Chemical and Pharmaceutical Research, 5(1), 185–192.

How to Cite

1.
Humenna AV, Rotar DV, Yakovychuk ND, Blinder OO, Deineka SY. An in-depth study of the antimicrobial spectrum activity of a number of new phosphonium derivatives of naphthalene. Zaporozhye Medical Journal [Internet]. 2019May31 [cited 2025Jan.27];(3). Available from: http://zmj.zsmu.edu.ua/article/view/169099

Issue

Section

Original research