DOI: https://doi.org/10.14739/2310-1210.2019.3.169197

Экспериментальные модели заболеваний почек для исследований патогенетических механизмов и эффективности фармакологической коррекции на фоне коморбидной патологии

N. M. Seredynska, N. D. Filipets, O. O. Filipets, K. V. Slobodian, A. I. Hozhenko

Аннотация


 

Цель работы – освещение современных моделей заболеваний почек, сочетанных с другими патологическими состояниями, для экспериментальных исследований патогенетических механизмов и эффективности фармакологической коррекции.

Рассмотрены экспериментальные модели, которые целесообразно использовать для исследования патогенеза и эффективности средств фармакологической коррекции коморбидной патологии. Акцентировано внимание на моделях, воспроизводящих кардиоренальный, гепаторенальный синдром и полиорганное гипоксическое гистогемическое повреждение у лабораторных крыс. Эти модели характеризуются легким моделированием, воспроизведением патогенеза коморбидных заболеваний, наличием острого и хронического периода повреждения, индуцированного антибиотиком доксорубицином или экотоксикантами – сулемой, нитритом натрия, 2,4-динитрофенолом.

Выводы. Представленные модели кардиоренального, гепаторенального синдромов и гипоксического повреждения организма являются оптимальными для проведения многоцелевых исследований физиологического, патофизиологического, фармакологического направлений с максимальным приближением результатов к клинико-терапевтическим особенностям коморбидной патологии.

 


Ключевые слова


экспериментальные модели; почки; коморбидная патология.

Полный текст:

PDF (English)

Литература


Gozhenko, A.I. (2018). Teoriya bolezni [Theory of disease]. Odesa: Fenix. [in Russian].

Gozhenko, A. I. (2016). Funkcional'no-metabolicheskij kontinuum [Functional-metabolic continuum]. Zhurnal natsionalnoi akademii medychnykh nauk Ukrayiny, 22(1), 3–8. [in Russian].

Seredinska, N. M., Yadlovskyi, O. E., Bershova, T. A., Omelyanenko, Z. P., Khomenko, V. S., & Kirichok, L. M. (2015). Otsinka intehralnykh pokaznykiv zhyttiediialnosti v shchuriv za umov kombinovanoho zastosuvannia nesteroidnykh protyzapalnykh zasobiv ta antahonista kaltsiiu na modeli revmatoidnoho artrytu, poiednanoho z arterialnoiu hipertenziieiu [The evaluation of rat`s integral indices after combined use of NSAIDs and calcium antagonist at the rheumatoid arthritis model in conjunction with arterial hypertension]. Farmakolohiia ta likarska toksykolohiia, 4–5, 69–78. [in Ukrainian].

Seredinskaya, N. N., Sushinskaya, A. A., Chomenko, V. S., Omelyanenko, Z. P., & Bershova, T. A. (2016). Kardiotropna diia tselekoksybu za kombinovanoho zastosuvannia z amlodypinom u shchuriv na tli adiuvantnoho artrytu, poiednanoho z arterialnoiu hipertenziieiu [Cardiotropic action of combined use of celecoxib and amlodipine in rats sicked on adjuvant arthritis coupled with arterial hypertension]. Farmatsevtychnyi zhurnal, 1, 91–97. [in Ukrainian].

Cho, S., & Yang, J. (2018). What Do Experimental Models Teach Us About Comorbidities in Stroke? Stroke, 49(2), 501–507. doi: 10.1161/STROKEAHA.117.017793

Freeman, W. D., & Wadei, H. M. (2015). A brain-kidney connection: the delicate interplay of brain and kidney physiology. Neurocrit Care, 22(2), 173–175. doi: 10.1007/s12028-015-0119-8

Nakagawa, N., & Hasebe, N. (2016). Pathophysiology of cerebro-cardio-renal continuum in patients with left ventricular hypertrophy. J Card Fail, 22(9), 157. doi: https://doi.org/10.1016/j.cardfail.2016.07.035

Husain-Syed, F., McCullough, P. A., Birk, H. W., Renker, M., Brocca, A., Seeger, W., et al. (2015). Cardio-Pulmonary-Renal Interactions: A Multidisciplinary Approach. J Am Coll Cardiol, 65(22), 2433–2448. doi: 10.1016/j.jacc.2015.04.024

Mindikoglu, A. L., & Pappas, S. C. (2018). New Developments in Hepatorenal Syndrome. Clin Gastroenterol Hepatol, 16(2), 162–177. doi: 10.1016/j.cgh.2017.05.041

Shchekochikhin, D., Schrier, R. W., & Lindenfeld, J. (2013). Cardiorenal syndrome: pathophysiology and treatment. Curr Cardiol Rep, 15(7), 380. doi: 10.1007/s11886-013-0380-4

De Vecchis, R., Baldi, C., & Di Biase, G. (2016). Poor concordance between different definitions of worsening renal function in patients with acute exacerbation of chronic heart failure: a retrospective study. Minerva Cardioangiol, 64(2), 127–137.

Di Lullo, L., Bellasi, А., & De Pascalis, А. (2017). Hypertension, type IV cardiorenal syndrome and chronic kidney disease: Pathophysiological and therapeutical approach. World J Hypertens, 7(1), 10–18. doi: 10.5494/wjh.v7.i1.10

Szymanski, M. K., de Boer, R. A., Navis, G. J., van Gilst, W. H., & Hillege, H. L. (2012). Animal models of cardiorenal syndrome: a review. Heart Failure Reviews, 17(3), 411–420. doi: 10.1007/s10741-011-9279-6

Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Naga Prasad, S. V., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest, 124(2), 617–630. doi: 10.1172/JCI72931

Cardinale, D., Colombo, A., Bacchiani, G., Tedeschi, I., Meroni, C. A.,Veglia, F., et al. (2015). Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation, 131(22), 1981–1988. doi: 10.1161/CIRCULATIONAHA.114.013777

Polegato, B. F., Minicucci, M. F., Azevedo, P. S., Carvalho, R. F., Chiuso-Minicucci, F., Pereira, E. J., et al. (2015). Acute doxorubicin-induced cardiotoxicity is associated with matrix metalloproteinase-2 alterations in rats. Cell Physiol Biochem, 35(5), 1924–33. doi: 10.1159/000374001

Моkhort, M. А, Seredinska, N. M., & Кiricheк, L. М. (2010). Kardiotoksychni efekty doksorubitsynu i dotsilnist yikh farmakolohichnoi korektsii antahonistamy kaltsiiu dyhidropirydynovoho riadu ta aktyvatoramy ATF-zalezhnykh kaliievykh kanaliv huanidynovoho riadu [Cardiotoxic effects of doxorubicin and expediency of its pharmacological correction by dihydropyridinic line calcium antagonists and by guanidine line ATF-sensitive potassium canals activators]. Farmakolohiia ta likarska toksykolohiia, 4(17), 35–44. [in Ukrainian].

Saenko, Yu. V., Shutоv, А. M., & Мusinа, Р. Kh. (2006). K mekhanizmu toksicheskogo dejstviya doksorubicina na pochki [On the меchanism of toxic effect of doxorubicin on the kidneys]. Nefrologiya, 10(4), 72–76 [in Russian].

Radwan, R. R., Shaban, E. A., Kenawy, S. A., & Salem, H. A. (2012). Protection by low-dose γ radiation on doxorubicin-induced nephropathy in rats pretreated with curcumin, green tea, garlic or L-carnitine. Bulletin of Faculty of Pharmacy, Cairo University, 50(2), 133–140. doi: 10.1016/j.bfopcu.2012.09.002

Nagai, K., Fukuno, S., Otani, K., Nagamine, Y., Omotani, S., Hatsuda, Y., et al. (2018). Prevention of doxorubicin-induced renal toxicity by theanine in rats. Pharmacology, 101(3–4), 219–224. doi: 10.1159/000486625

Hrenák, J., Arendášová, K., Rajkovičová, R., Aziriová, S., Repová, K., Krajčírovičová, K., et al. (2013). Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res, 62(l), 181–189.

Kalender, Y., Yel, M., & Kalender, S. (2005). Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology, 209(1), 39–45. doi: 10.1016/j.tox.2004.12.003

El-Moselhy, M. A., & El-Sheikh, A. A. K. (2014). Protective mechanisms of atorvastatin against doxorubicin-induced hepato-renal toxicity. Biomed Pharmacother, 68(1), 101–110. doi: 10.1016/j.biopha.2013.09.001

Zupanets, I. A., Vetrova, К. V., Sakharova, T. S., & Derkach, R. V. (2014). Korektsiia doksorubitsynindukovanoi hepatotoksychnosti pokhidnymy hliukozaminu ta yikh kombinatsiiamy z kvertsetynom v eksperymenti na shchurakh [Correction of doxorubicin-induced hepatotoxicity by glucosamine derivatives and their combinations with quercetin in rats]. Klinichna farmatsiia, 2, 4–9. [in Ukrainian].

Wang, Y., Mei, X., Yuan, J., Lu, W., Li, B., & Xu, D. (2015). Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicol Appl Pharmacol, 289(1), 1–11. doi: 10.1016/j.taap.2015.08.017

Gozhenko, А. I, & Sluchenko, А. N. (2006). Funkcional'noe sostoyanie pochek v usloviyakh vodnoj i solevoj nagruzok pri beremennosti u krys na fone sulemovoj nefropatii [Functional state of the kidneys under conditions of water and salt loads in pregnant rats against the background of sublimate nephropathy]. Nephrologiya, 10(1), 72–76. [in Russian].

Agha, F. E., Youness, E. R., Selim, M. M. H., & Ahmed, H. H. (2014). Nephroprotective potential of selenium and taurine against mercuric chloride induced nephropathy in rats. Renal Failure, 36(5), 704–716. doi: 10.3109/0886022X.2014.890012

Gozhenko, A. I, & Filipets, N. D. (2013). Nefrotropnye e'ffekty pri aktivacii adenozintrifosfatchuvstvitel'nykh kalievykh kanalov v zavisimosti ot funktsional'nogo sostoyaniya pochek krys [Тhe renotropic effects of adenosine triphosphate-sensitive potassium channel activation depending on the functional state of kidneys in rats]. Nephrologiya, 17(2), 87–90. [in Russian].

Filipets, N. D, & Gozhenko, A. I. (2014). Sravnitel'naya ocenka nefroprotektivnykh svojstv modulyatorov kalievykh i kal'ciyevykh kanalov pri e'ksperimental'nom porazhenii pochek [Comparative assessment of nephroprotective properties of potassium and calcium channel modulators in experimental renal injury]. E'ksperimental'naya i klinicheskaya farmakologiya, 77(1), 10–12. [in Russian].

Oda, S. S., & El-Ashmawy, I. M. (2012). Protective effect of silymarin on mercury-induced acute nephro-hepatotoxicity in rats. Veterinaria, 9(4), 376–383. doi: 10.5829/idosi.gv.2012.9.4.6510

Liu, W., Xu, Z., Li, H., Guo, M., Yang, T., Feng, S., et al. (2017). Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum Exp Toxicol, 36(9), 949–966. doi: 10.1177/0960327116677355

Rohovyi, Yu. Ye., Zlotar, O.V., & Filipova, L.O. (2012). Patofiziolohiia hepatorenalnoho syndromu na poliurychnii stadii sulemovoi nefropatii. [Pathophysiology of hepatorenal syndrome at the polyuric stage of sublimate nephropathy]. Chernivtsi: Medychnyi universytet. [in Ukrainian].

Hirakawa, Y., Tanaka, T., & Nangaku, M. (2017). Renal Hypoxia in CKD; Pathophysiology and Detecting Methods. Front Physiol, (8), 99. doi: 10.3389/fphys.2017.00099

Handzlik, M. K., Constantin-Teodosiu, D., Greenhaff, P. L., & Cole, M. A. (2018). Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance. J Physiol, 596(15), 3357–3369. doi: 10.1113/JP275357

Schiffer, T. A., & Friederich-Persson, M. (2017). Mitochondrial Reactive Oxygen Species and Kidney Hypoxia in the Development of Diabetic Nephropathy. Front Physiol, 8, 211. doi: 10.3389/fphys.2017.00211

Gozhenko, A. I, & Filipets, N. D. (2014). Funktsionalnyi stan nyrok pislia aktyvatsii adenozyntryfosfatchutlyvykh kaliievykh kanaliv pry eksperymentalnii hostrii hipoksii [Тhe functional state of kidneys after adenosine triphosphate sensitive potassium channels activation in experimental acute hypoxia] Fiziolohichnyi zhurnal, 60(4), 22–9 [in Ukrainian].

Putilina, F. E., & Еshchenko, N. D. (1971). Vliyaniye gipoksii i 2,4-dinitrofenola na laktatdegidrogenaznuyu reakciyu v mozgu [Effect of hypoxia and 2,4-dinitrophenol on lactate dehydrogenase activity in brain, liver and kidneys]. Voprosy medicinskoj khimii, 17(2), 161–165. [in Russian].

Al-Rasheed, N. M., Fadda, L. M., Attia, H. A., Ali, H. M., & Al-Rasheed, N. M. (2017). Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF1-α, TGF-β, Smad-2, and AKT pathways. J Biochem Mol Toxicol, 31(5). doi: 10.1002/jbt.21883

Friederich-Persson, M., Thörn, E., Hansell, P., Nangaku, M., Levin, M., & Palm, F. (2013). Кidney hypoxia, due to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension, 62(5), 914–919. doi: 10.1161/HYPERTENSIONAHA.113.01425

Boihuk, Т. М., Rohovyi, Yu. Ye, & Popovych, H. B. (2012). Patofiziolohiia hepato-renalnoho syndromu pry hemichnii hipoksii [Pathophysiology of the hepatic-renal syndrome at the hemic hypoxia]. Chernivtsi: Medychnyi universytet. [in Ukrainian].

Filipets, N. D., Sirman, V. M., & Gozhenko, A.І . (2014). Vliyaniye modulyatorov ionnykh kanalov na funkciyu pochek v nachal'noj stadii razvitiya gistogemicheskoj gipoksii [Effects of modulators of ion channels on renal function at the initial stage of development of histohemic hypoxia]. Zhurnal natsionalnoi akademii medychnykh nauk Ukrainy, 20(4), 483–487. [in Russian].

Gozhenko A. I., Filipets N. D., & Zukow W. (2013). Flokaline and diltiazem renoprotector properties in chronization hypoxic nephropathy. Journal of Health Sciences, 3(12), 389–398.


Ссылки

  • На текущий момент ссылки отсутствуют.


Запорожский медицинский журнал   Лицензия Creative Commons
Запорожский государственный медицинский университет