The unique properties of microorganisms that form a biofilm of the oral cavity
DOI:
https://doi.org/10.14739/2310-1210.2019.3.169198Keywords:
oral cavity, microbiome, biofilmAbstract
The purpose of our work was to highlight contemporary ideas about the features of the oral microbiome existence as a biofilm on its surfaces, to summarize the results of modern studies on the composition, formation and properties of microorganisms that form biofilm by reviewing the scientific literature.
A majority of the oral bacteria exist in form of specifically organized biofilms rather than bacteria in a planktonic state. The biofilm mode of growth leads to the expression of gene sets which determine the features of metabolism and properties of microorganisms in biofilms. Bacterial biofilm-specific phenotypes are more virulent and highly resistant to antimicrobial agents. Biofilms offer bacteria several environmental and physiological benefits. These advantages lie in the fact that biofilms are a protective physical barrier for nonspecific and specific bacterial protection during infection; they provide resistance to antimicrobial agents.
Modern research methods have been used to study biofilms, which greatly have detailed its composition, structure, properties, and mechanisms of interaction between microorganisms in biofilm. Taking into account the difference in the properties of planktonic cultures and collected in a biofilm, saliva can not be an adequate sample for etiological studies. Despite the fact, that the studies of oral biofilms have obtained important scientific results, control of biofilms remains an unresolved problem and should be one of the important directions of modern research.
Conclusions. Dental plaque, which is a typical biofilm of the oral cavity, has several stages of formation and its microbial composition varies from the initial streptococcus burden with high content of actinomycetes and other gram-positive bacteria in biofilm. Microflora of a mature dental plaque is varied with the predominance of anaerobic microorganisms.
References
Dewhirst, F. E. (2016). The Oral Microbiome: Critical for Understanding Oral Health and Disease. J Calif Dent Assoc. 44(7), 409–410.
Gomez, A., & Nelson, K. E. (2017). The Oral Microbiome of Children: Development, Disease, and Implications Beyond Oral Health. Microb Ecol. 73(2), 492–503. doi: 10.1007/s00248-016-0854-1.
Nyvad, B., Crielaard, W., Mira, A., Takahashi, N., & Beighton, D. (2013). Dental Caries from a Molecular Microbiological Perspective. Caries Res 47(2), 89–102. doi: 10.1159/000345367.
Tanner, A. C., Kressirer, C. A., & Faller, L. L. (2016).Understanding Caries From the Oral Microbiome Perspective. J Calif Dent Assoc., 44(7), 437–446.
Petrushanko, T. O., Chereda, V. V., & Loban, G. A. (2013). Yakisnyi sklad mikrobiotsenozu porozhnyny rota osib molodoho viku z riznoiu intensyvnistiu kariiesu [Qualitative composition of oral mocrobiocenosis in young adults who have dental caries of different intensity]. Svit medytsyny ta biolohii, 1(36), 57–59. [in Ukrainian].
Petrushanko, T. A., Chereda, V. V., & Loban', G. A. (2017). The relationship between colonization resistance of the oral cavity and individual -typological characteristics of personality: dental aspects. Wiad Lek., 70(4), 754–757.
Santigli, E., Koller, M., & Klug, B. (2017). Oral Biofilm Sampling for Microbiome Analysis in Healthy Children. J Vis Exp., 130. doi: 10.3791/56320
Marsh, P. D. (2018 ). In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv Dent Res. 29(1), 60–65. doi: 10.1177/0022034517735295
Lof, M., Janus, M. M., & Krom, B. P. (2017). Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms. J Fungi (Basel), 3(3), 40. doi: 10.3390/jof3030040
Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 39(5), 649–669. doi: 10.1093/femsre/fuv015.
Ananieva, M. M. (2018). Etiological and patogenetic aspects of non-specific bacterial vaginosis. Zaporozhye medical journal, 20, 3(108), 432–436. doi: 10.14739/2310-1210.2018.3.132124
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 14(9), 563–575. doi: 10.1038/nrmicro.2016.94
Berlanga, M., & Guerrero, R. (2016). Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact. 15(1), 165. doi: 10.1186/s12934-016-0569-5
Guilhen, C., Forestier, C., & Balestrino, D. (2017). Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol,. 105(2), 188–210. doi: 10.1111/mmi.13698
Petrova, O. E., & Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol. 30, 67–78. doi: 10.1016/j.mib.2016.01.004
Lee, K. W., Periasamy, S., Mukherjee, M., Xie, C., Kjelleberg, S., & Rice, S. A. (2014). Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J., 8(4), 894–907. doi: 10.1038/ismej.2013.194
Burmølle, M., Ren, D., Bjarnsholt, T., & Sørensen, S. J. (2014). Interactions in multispecies biofilms: do they actually matter? Trends Microbiol., 22(2), 84–91. doi: 10.1016/j.tim.2013.12.004
Merod, R. T., & Wuertz, S. (2014). Extracellular polymeric substance architecture influences natural genetic transformation of Acinetobacter baylyi in biofilms. Appl Environ Microbiol., 80(24), 7752–7757. doi: 10.1128/AEM.01984-14
Meervenne, E., De Weirdt, R., Van Coillie, E., Devlieghere, F., Hernan L., & Boon N. (2014). Biofilm models for the food industry: hot spots for plasmid transfer? Pathog Dis., 70(3), 332–338. doi: 10.1111/2049-632X.12134
Kouzel, N., Oldewurtel, E. R., & Maier, B. (2015). Gene transfer efficiency in gonococcal biofilms: role of biofilm age, architecture, and pilin antigenic variation. J Bacteriol., 197(14), 2422–2431. doi: 10.1128/JB.00171-15
Jakobsen, T. H., Tolker-Nielsen, T., & Givskov, M. (2017). Bacterial biofilm control by perturbation of bacterial signaling processes. Int. J. Mol. Sci., 18(9), E1970. doi: 10.3390/ijms18091970
Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis., 34(5), 877–886. doi: 10.1007/s10096-015-2323-z
Van Acker, H., Van Dijck, P., & Coenye, T. (2014). Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol., 22(6), 326–333. doi: 10.1016/j.tim.2014.02.001
Lamont, R. J., & Hajishengallis, G. (2015). Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med., 21(3), 172–183. doi: 10.1016/j.molmed..11.004
Nazarchuk, O. A., & Faustova, M. O. (2017). Bioplivkoutvorіuіuchi vlastyvosti klinichnykh shtamiv hrampozytyvnykh mikroorhanizmiv [Biofilmproducing properties of clinical strains of grampositive microorganisms]. Biomedical and Biosocial Anthropology 29, 6–9. [in Ukrainian].
Samaranayake, L., & Matsubara, V. H. (2017). Normal Oral Flora and the Oral Ecosystem. Dent Clin North Am., 61(2), 199–215. doi: 10.1016/j.cden.2016.11.002
Corfield, A. P. (2015). Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta., 1850(1), 236–252. doi: 10.1016/j.bbagen.2014.05.003
Park, J. H., Lee, J. K., Um, H. S., Chang, B. S., & Lee, S. Y. (2014). A periodontitis-associated multispecies model of an oral biofilm. J Periodontal Implant Sci., 44(2), 79–84. doi: 10.5051/jpis.2014.44.2.79
Roberts, F. A., & Darveau, R. P. (2015). Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000, 69(1), 18–27. doi: 10.1111/prd.12087
Schincaglia, G. P., Hong, B. Y., Rosania, A., Barasz, J., Thompson, A., Sobue, T., et al. (2017). Clinical, immune, and microbiome traits of gingivitis and peri‐implant mucositis. J Dent Res., 96(1), 47–55. doi: 10.1177/0022034516668847
Al-Ahmad, A., Muzafferiy, F., Anderson, A. C., Wölber, J. P., Ratka-Krüger, P., Fretwurst, T., et al. (2018). Shift of microbial composition of peri-implantitis-associated oral biofilm as revealed by 16S rRNA gene cloning. J Med Microbiol, 67(3), 332–340. doi: 10.1099/jmm.0.000682
Mystkowska, J., Niemirowicz-Laskowska, K., Łysik, D., Tokajuk, G., Dąbrowski, J. R., & Bucki, R. (2018). The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. Int J Mol Sci., 19(3), 743. doi: 10.3390/ijms19030743
Mira, A., Simon-Soro, A., & Curtis, M. A. (2017). Role of microbial communities in the pathogenesis of periodontal diseases and caries. J Clin Periodontol., 44(18), 23–38. doi: 10.1111/jcpe.12671
Hannig, C., Hannig, M., Kensche, A., & Carpenter, G. (2017). The mucosal pellicle? An underestimated factor in oral physiology. Arch. Oral Biol., 80, 144–152. doi: 10.1016/j.archoralbio.2017.04.001
Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E., & Borisy, G. G. (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A. 9, 113(6), E791-800. doi: 10.1073/pnas.1522149113
Hajishengallis, E., Parsaei, Y., Klein, M. I., & Koo, H. (2017). Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 32(1), 24–34. doi: 10.1111/omi.12152
Ippolitov, E. V., Nikolaeva, E. N., & Tsarev, V. N. (2017). Bioplenka polosti rta – induktory signal'nykh sistem vrozhdennogo immuniteta [Oral biofilm: inductors of congenital immunity signal pathways]. Stomatologiya, 96(4), 58–62. doi: 10.17116/stomat201796458-62 [in Russian].
Mysak, J., Podzimek, S., Sommerova, P., Lyuya-Mi, Y., Bartova, J., Janatova, T., et al. (2014). Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. J Immunol Res., 2014, 476068. doi: 10.1155/2014/476068
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)