Staphylococcal proliferation and biofilm formation in vitro under the influence of cell-free extracts of probiotic origin

Authors

  • O. V. Knysh State Institution “Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine,
  • O. Yu. Isaienko State Institution “Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine,
  • Ye. M. Babych State Institution “Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine,
  • M. M. Popov State Institution “Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2019.4.173350

Keywords:

cell-free system, cell proliferation, biofilm, probiotic, Bifidobacterium bifidum, Lactobacillus reuteri, Staphylococcus aureus, Staphylococcus epidermidis

Abstract

 

The paper presents the results of the study on proliferation and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis under the influence of cell-free extracts obtained by the author’s method and containing derivatives of probiotic strains Вifidobacterium bifidum and Lactobacillus reuteri.

The aim of this work was to study the ability of cell-free extracts containing derivatives of probiotics Bifidobacterium bifidum and Lactobacillus reuteri to influence proliferation and biofilm formation by staphylococci in vitro, to evaluate the prospects of their use for the correction of microecological disorders and adjuvant therapy of staphylococcal infection.

Materials and methods. Cell-free extracts were obtained from commercial strains B. bifidum and L. reuteri by the authors’ method. Reference strain of S. aureus AТСС 25923 and clinical isolate of S. epidermidis were used as a test cultures. The investigation of the proliferation and biofilm formation by staphylococci was carried out by spectrophotometric method using a microtiter-plate reader “Lisa Scan EM” (Erba Lachema s.r.o., Czech Republic).

Results. It has been established that the effect of cell-free extract on proliferation and biofilm formation depends on the type of extract and on the species of staphylococcus. Among the five studied extracts, only one significantly inhibits the proliferation and biofilm formation of both staphylococci species. It is the cell-free extract, obtained from L. reuteri culture, grown in its own disintegrate supplemented with glycerol and glucose. The proliferative activity of S. aureus is sensitive to the L. reuteri derivatives while the proliferative activity of S. epidermidis is sensitive to the B. bifidum derivatives. The filtrates of disintegrates have stimulatory effect, while the filtrates of cultures have inhibitory effect on the staphylococcal proliferation. The biofilm formation by S. aureus is significantly inhibited by B. bifidum derivatives and is stimulated by L. reuteri derivatives. The biofilm formation by S. epidermidis is stimulated by derivatives of bifidobacteria and does not change in the presence of derivatives of lactobacteria in the growth medium.

Conclusions. Obtained results indicate a high bioregulatory potential of cell-free extracts of probiotic origin and the possibility of drugs development for microecological disorders correction on their basis. They also confirm that the method of obtaining probiotic derivatives with bacteriotropic activity through precursor-directed biosynthesis is promising. Cell-free extract, obtained from L. reuteri culture, grown in its own disintegrate supplemented with glycerol and glucose, exhibits pronounced anti-staphylococcal activity in vitro. After confirming efficacy in vivo, it can be recommended for the adjuvant therapy of staphylococcal infections.

References

Kornienko, M. A., Kopyltsov, V. N., Ilina, E. N., Shevlyagina, N. V., Didenko, L. V., Lyubasovskaya, L. A., & Priputnevich, T. V. (2016). Sposobnost' stafilokokkov razlichnykh vidov k obrazovaniyu bioplenok i ikh vozdejstvie na kletki cheloveka [The ability of various strains of Staphylococcus to create biofilms and their effect on cells of the human body]. Molekulyarnaya genetika, mikrobiologiya i virusologiya, 34(1), 18–25. [in Russian].

Lister, J. L., & Horswill, A. R. (2014). Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Frontiers In Cellular And Infection Microbiology, 4, 178. doi: 10.3389/fcimb.2014.00178

Kavanaugh, J., & Horswill, A. R. (2016). Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development. Journal of Biological Chemistry, 291(24), 12556–12564. doi: 10.1074/jbc.r116.722710

Paharik, A. E, & Horswill, A. R. (2016). The staphylococcal biofilm: adhesins, regulation, and host response. Microbiology Spectrum, 4(2). doi: 10.1128/microbiolspec.VMBF-0022-2015

Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926. doi: 10.1128/cmr.00109-13

Otto, M. (2013). Staphylococcus epidermidis pathogenesis. Methods in Molecular Biology, 1106, 17–31. doi: 10.1007/978-1-62703-736-5_2

Goetz, C., Tremblay, Y., Lamarche, D., Blondeau, A., Gaudreau, A., Labrie, J., et al. (2017). Coagulase-negative staphylococci species affect biofilm formation of other coagulase-negative and coagulase-positive staphylococci. Journal of Dairy Science, 100(8), 6454–6464. doi: 10.3168/jds.2017-12629

Orr, M., Donaldson, G., Severin, G., Wang, J., Sintim, H., Waters, C., et al. (2015). Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proceedings of The National Academy of Sciences, 112(36), E5048–E5057. doi: 10.1073/pnas.1507245112

Korobov, V. P., Lemkina, L. M., & Polyudova, T. V. (2015). Destrukciya bioplenok koagulazonegativnykh stafilokokkov pod dejstviem bakterial'nykh kationnykh peptidov [Destruction biofilms of coagulase-negative staphylococci by bacterial cationic peptides]. Vestnik Permskogo universiteta. Seriya: Biologiya, 3, 233–239. [in Russian].

Rybalchenko, O. V., Bondarenko, V. M., & Orlova, O. G. (2013). Struktura i funktsii bakterial'nykh bioplenok simbioticheskikh i uslovno-patogennykh bakterij [Structure and functions of bacterial biofilms of symbiotic and opportunistic bacteria]. Verhnevolzhskij medicinskij zhurnal, 11(4), 37–42. [in Russian].

Terenteva, N. A., Timchenko, N. F., & Rasskazov, V. A. (2014). Issledovanie vliyaniya biologicheski aktivnykh veschestv na formirovanie bakterial'nykh bioplenok [Study of biological active substances on the bacterial biofilm formation]. Zdorov'e. Medicinskaya e'kologiya. Nauka, 3(57). 54–55. [in Russian].

Vuotto, C., Longo, F., & Donelli, G. (2014). Probiotics to counteract biofilm-associated infections: promising and conflicting data. International Journal of Oral Science, 6(4), 189–194. doi: 10.1038/ijos.2014.52

Markov, A. A., Timokhina, T. Kh., Perunova, N. B., & Paromova, Ya. I. (2018). Vozmozhnost' primeneniya e'kzometabolitov Bifidobacterium bifidum v travmatologii i ortopedii dlya predotvrascheniya pervichnoj kontaminacii i bioplenkoobrazovaniya na poverkhnosti implantatov s sinteticheskim bioaktivnym kalcij-fosfatnym mineral'nym pokryitiem [The possibility of using bifidobacterium bifidum exometabolites in traumatology and orthopedics to prevent primary contamination and biofilm formation on the surface of implants with synthetic bioactive calcium-phosphate mineral coating]. Medicinskij al'manakh, 3(54), 128–130. doi: 10.21145/2499-9954-2018-3-128-130 [in Russian].

Knysh, O. V., Isaienko, O. Yu., Babych, Ye. M., Polianska, V. P., Zachepylo, S. V., Kompaniiets, A. M., Horbach, T. V. (2018). Patent Ukrainy 122859. МПК C12N 1/20, A61K 35/74, C12R 1/25. Sposib oderzhannia biolohichno aktyvnykh deryvativ bakterii probiotychnykh shtamiv [Patent of Ukraine 122859, МПК C12N 1/20, A61K 35/74, C12R 1/25. Method for obtaining biologically active derivatives of probiotic strains bacteria]. Biuleten, 2. [in Ukrainian].

Stepanović, S., Vuković, D., Hola, V., Bonaventura, G., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115(8), 891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x

In Lee, S., Barancelli, G., de Camargo, T. M., Corassin, C. H., Rosim, R. E., da Cruz, A., et al. (2017). Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Research International, 91, 88–91. doi: 10.1016/j.foodres.2016.11.039

Gladysheva, I. V. (2014). Antagonisticheskaya aktivnost' korinebakterij [Antagonistic activity of corynebacteria]. Vestnik Orenburgskogo gosudarstvennogo universiteta, 13(174), 16–19. [in Russian].

Lindquist, J. A., & Mertens, P. R. (2018). Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Communication and Signaling, 16(1), 63. doi: 10.1186/s12964-018-0274-6

Melo, T. A., dos Santos, T. F., de Almeida, M. E., Junior, L. A., G. F., Andrade, E. F., Rezende, R. P., et al. (2016). Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC microbiology, 16, 250. doi: 10.1186/s12866-016-0871-8

Ahn, K. B., Baik, J. E., Yun, C-H., & Han, S. H. (2018). Lipoteichoic acid inhibits Staphylococcus aureus biofilm formation. Frontiers In Microbiology, 9, 327. doi: 10.3389/fmicb.2018.00327

Spinler, J. K., Auchtung, J., Brown, A., Boonma, P., Oezguen, N., Ross, C. L., et al. (2017). Next-generation probiotics targeting Clostridium difficile through precursor-directed antimicrobial biosynthesis. Infection And Immunity, 85(10). doi: 10.1128/iai.00303-17

Downloads

How to Cite

1.
Knysh OV, Isaienko OY, Babych YM, Popov MM. Staphylococcal proliferation and biofilm formation in vitro under the influence of cell-free extracts of probiotic origin. Zaporozhye Medical Journal [Internet]. 2019Jul.15 [cited 2024Dec.23];(4). Available from: http://zmj.zsmu.edu.ua/article/view/173350

Issue

Section

Original research