Analysis of the current state of the postoperative pulmonary complications issue in abdominal surgery
DOI:
https://doi.org/10.14739/2310-1210.2019.4.173360Keywords:
postoperative complications, mechanical ventilation, prevention of pulmonary complicationsAbstract
Purpose: based on the analysis of the scientific literature data, to determine the relevance of postoperative pulmonary complications (PPCs) issue in abdominal surgery, as well as to examine the causes and modern methods of their development prevention in patients with unaffected lungs.
Conclusions. Indicators of PPCs in abdominal surgery range from 17 % to 88 %, and their development leads to an increase in lethality, the cost of treatment, and the length of stay in a medical institution. Mechanical ventilation (MV) is non-physiological and can cause ventilator-associated lung injury (VALI), adversely affects the respiratory muscles, as well as non-respiratory lung function. The above factors are prominent in PPCs development causing an increase in morbidity and mortality in the postoperative period. Extensive open abdominal operations, especially upper abdominal surgical procedures, increase the risk of PPCs development. In the analysis of modern studies, there has been a clear “paradigm shift” from the prevention of death and complications of lung damage to the prevention of respiratory complications development itself. To date, the risk factors have been identified and scales have been developed that allow predicting PPCs development in a timely and reliable manner, one of which is the ARISCAT scale. There are various measures to prevent VALI and PPCs development and the main ones include low respiratory volume, the use of positive end-expiratory pressure (PEEP) and alveolar recruitment maneuvers. The combination of these measures has been termed “protective ventilation”. It has been proved that protective MV during abdominal surgery in patients with unaffected lungs can reduce the risk of PPCs development.
References
Pearse, R. M., Moreno, R. P., Bauer, P., Pelosi, P., Metnitz, P., Spies, C., et al. (2012). Mortality after surgery in Europe: a 7 day cohort study., 380(9847), 1059–1065. doi: 10.1016/S0140-6736(12)61148-9
Hemmes, S. N., Gama de Abreu, M., Pelosi, P., & Schultz, M. J. (2014) High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet, 384(9942), 495–503. doi: 10.1016/S0140-6736(14)60416-5
Souza Possa, S., Braga Amador, C., Meira Costa, A., Takahama Sakamotoa, E., Seiko Kondoac, C., Maida Vasconcellos, A. L., et al. (2014). Implementation of a guideline for physical therapy in the postoperative period of upper abdominal surgery reduces the incidence of atelectasis and length of hospital stay. Revista Portuguesa de Pneumologia (English Edition), 20(2), 69–77. doi: 10.1016/j.rppneu.2013.07.005
Severgnini, P., Selmo, G., Lanza, C., Chiesa, A., Frigerio, A., Bacuzzi, A., et al. (2014). Protective Mechanical Ventilation During General Anesthesia for Open Abdominal Surgery Improves Postoperative Pulmonary Function. Survey of Anesthesiology, 58(1), 19–20. doi: 10.1097/01.SA.0000441004.73409.91
Gong, M. N., Wei, Z., Xu, L. L., Miller, D. P., Thompson, B. T., & Christiani, D. C. (2004). Polymorphism in the Surfactant Protein-B Gene, Gender, and the Risk of Direct Pulmonary Injury and ARDS. Chest, 125(1), 203–211. doi: 10.1378/chest.125.1.203
Webb, H. H., & Tierney, D. (1974). Experimental pulmonary edema due to positive pressure ventilation with high inflation pressures, protection by positive end-expiratory pressure. The American review of respiratory disease, 110(5), 556–565. doi: 10.1164/arrd.1974.110.5.556
Smetana, G. W., Lawrence, V. A., & Cornell, J. E. (2006). Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review for the American Collegeof Physicians. Ann Intern Med, 144(8), 581–95. doi: 10.7326/0003-4819-144-8-200604180-00009
Lawrence, V. A., Cornell, J. E., & Smetana, G. W. (2006). Strategies to reduce postoperativepulmonary complications after noncardiothoracic surgery: systematic review forthe American College of Physicians. Ann Intern Med, 144(8), 596–608. doi: 10.7326/0003-4819-144-8-200604180-00011
Tjeertes, E., Hoeks, S., Beks, S., Valentijn, T., Hoofwijk, A., & Stolker, R. (2015). Obesity – a risk factor for postoperative complications in general surgery? BMC Anesthesiology, 15, 112. doi: 10.1186/s12871-015-0096-7
Mendonça, J., Pereira, H., Xará, D., Santos, A., & Abelha, F. (2014). Obese patients: Respiratory complications in the post-anesthesia care unit. Rev Port Pneumol, 20(1), 12–9. doi: 10.1016/j.rppneu.2013.04.002
Canet, J., Gallart, L., Gomar, C., Paluzie, G., Vallès, J., Castillo, J., et al. (2010). Prediction of Postoperative Pulmonary Complications in a Population-based Surgical Cohort. Anesthesiology, 113(6), 1338–1350. doi: 10.1097/ALN.0b013e3181fc6e0a
Arozullah, A., Daley, J., Henderson, W., & Khuri, S. (2000). Multifactorial Risk Index for Predicting Postoperative Respiratory Failure in Men After Major Noncardiac Surgery. Annals of Surgery, 232(2), 242–253. doi: 10.1097/00000658-200008000-00015
Gupta, H., Gupta, P., Fang, X., Miller, W., Cemaj, S., Forse, R., & Morrow, L. (2011). Development and Validation of a Risk Calculator Predicting Postoperative Respiratory Failure. Chest, 140(5), 1207–1215. doi: 10.1378/chest.11-0466
Brower, R. G., Matthay, M. A., Morris, A., Schoenfeld, D., Thompson, B. T., Wheeler, A. (2000) Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med, 342(18), 1301-8. doi: 10.1056/NEJM200005043421801
Weingarten, T. N., Whalen, F. X., Warner, D. O., Gajic, O., Schears, G. J., Snyder, M. R., et al. (2010). Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. British Journal of Anaesthesia, 104(1), 16–22. doi: 10.1093/bja/aep319
Ladha, K., Vidal Melo, M., McLean, D., Wanderer, J., Grabitz, S., Kurth, T. & Eikermann, M. (2015). Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ, 351. h3646. doi: 10.1136/bmj.h3646
Futier, E., Constantin, J., Paugam-Burtz, C., Pascal, J., Eurin, M., Neuschwander, A., et al. (2014). A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery. Survey of Anesthesiology, 58(4), 169–171. doi: 10.1097/01.sa.0000453220.13770.84
Sutherasan, Y., Vargas, M., & Pelosi, P. (2014). Protective mechanical ventilation in the non-injured lung: review and meta-analysis. Critical Care, 18(2), 211. doi: 10.1186/cc13778
Serpa Neto, A., Hemmes, S. N., Barbas, C. S., Beiderlinden, M., Biehl, M., Binnekade, J. M., et al. (2014). Protocol for a systematic review and individual patient data meta-analysis of benefit of so-called lung-protective ventilation settings in patients under general anesthesia for surgery. Systematic Reviews, 3(1). doi: 10.1097/ALN.0000000000000706
Yang, D., Grant, M., Stone, A., Wu, C., & Wick, E. (2016). A Meta-analysis of Intraoperative Ventilation Strategies to Prevent Pulmonary Complications. Annals of Surgery, 263(5), 881–887. doi: 10.1097/SLA.0000000000001443
Serpa, N., Schultz, M., & Slutsky, A. (2015). Current concepts of protective ventilation during general anaesthesia. Swiss Medical Weekly., 145, w14211 doi: 10.4414/smw.2015.14211
Silva, P. L., Negrini, D., & Rocco, P. R. (2015). Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol, 29(3), 301–313. doi: 10.1016/j.bpa.2015.08.004
Guay, J., & Ochroch, E. A. (2015). Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in patients without acute lung injury. Cochrane Database Systematic Reviews, 12, CD011151. doi: 10.1002/14651858.CD011151
Treschan, T. A., Kaisers, W., Schaefer, M. S., Bastin, B., Schmalz, U., Wania, V., et al. (2012). Ventilation With Low Tidal Volumes During Upper Abdominal Surgery Does Not Improve Postoperative Lung Function. Br J Anaesth, 109(2), 263–71. doi: 10.1093/bja/aes140
Guo, L., Wang, W., Zhao, N., Guo, L., Chi, C., Hou, W., et al. (2016). Mechanical ventilation strategies for intensive care unit patients without acute lung injury or acute respiratory distress syndrome: a systematic review and network meta-analysis. Critical Care, 20(1), 226. doi: 10.1186/s13054-016-1396-0
Levin, M. A., McCormick, P. J., Lin, H. M., Hosseinian, L., & Fischer, G. W. (2014) Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. British Journal of Anaesthesia, 113(1), 97–108. doi: 10.1093/bja/aeu054
de Jong, M., Ladha, K., Vidal Melo, M., Staehr-Rye, A., Bittner, E., Kurth, T., & Eikermann, M. (2016). Differential Effects of Intraoperative Positive End-expiratory Pressure (PEEP) on Respiratory Outcome in Major Abdominal Surgery Versus Craniotomy. Annals Surgery, 264(2), 362–369. doi: 10.1097/SLA.0000000000001499
Hemmes, S. N., Serpa Neto, A., & Schultz, M. J. ( 2013). Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Current Opinion in Anesthesiology, 26(2), 126–33. doi: 10.1097/ACO.0b013e32835e1242
Clinicaltrials.gov. Individualized Perioperative Open Lung Ventilatory Strategy. – 2016. Retrieved from https://clinicaltrials.gov/ ct2/show/NCT02158923
Hartland, B. L., Newell, T. J., & Damico, N. (2015). Alveolar recruitment maneuvers under general anesthesia: a systematic review of the literature. Respiratory Care, 60(4), 609–620. doi: 10.4187/respcare.03488
Meyhoff, C. S., Jorgensen, L. N., Wetterslev, J., Christensen, K. B., & Rasmussen, L. S. (2012) Increased long-term mortality after a high perioperative inspiratory oxygen. fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesthesia & Analgesia, 115(4), 849–854. doi: 10.1213/ANE.0b013e3182652a51
Hovaguimian, F., Lysakowski, C., Elia, N., & Tramèr, M. (2013). Effect of Intraoperative High Inspired Oxygen Fraction on Surgical Site Infection, Postoperative Nausea and Vomiting, and Pulmonary Function. Anesthesiology, 119(2), 303–16. doi: 10.1097/ALN.0b013e31829aaff4
de Graaff, A. E., Dongelmans, D. A., Binnekade, J. M., & de Jonge, E. (2011). Clinicians’ response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensive Care Medicine, 37(1), 46–51. doi: 10.1007/s00134-010-2025-z
do Nascimento Junior, P., Módolo, N., Andrade, S., Guimarães, M., Braz, L., & El Dib, R. (2014). Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database of Systematic Reviews, 2, CD006058. doi: 10.1002/14651858.CD006058.pub3
Dellinger, R., Levy, M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. et al. (2013) Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Intensive Care Medicine, 41(2), 580–637. doi: 10.1097/CCM.0b013e31827e83af
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)