Experimental models of cartilage tissue pathology

Authors

  • D. S. Nosivets SI “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”, Dnipro, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2019.4.173362

Keywords:

patient simulation, osteoarthritis

Abstract

 

The author of the article, based on an analytical review of literature data, attempted to summarize and systematize the methods of osteoarthrosis formation through experimental modeling of cartilage tissue pathology. Osteoarthrosis is a degenerative-dystrophic disease of the synovial joints in humans and animals. In humans, osteoarthritis is a common and disabling pathology of the musculoskeletal system, which leads to a serious violation of the quality of life and social maladjustment. The modern concept of this pathology development characterizes this disease as a polyetiological, the appearance and development of which is influenced by both environmental factors and characteristics of an organism. The prevalence and consequences of osteoarthrosis have raised a widespread interest in this disease among a wide range of specialists in various fields, whose studies in their entirety are aimed at resolving issues related to optimizing treatment tactics and improving efficiency and safety, including medical treatment. To study the efficacy and safety of medicinal substances, agents and drugs used to treat osteoarthrosis, animal experimental models are widely used. The development of an experimental model is intended to reproduce the pathological process, which is identical to the disease in humans by its etiological and/or pathogenetic features. The article discusses the main types of experimental models of cartilage tissue pathology, describes various types of experimental animals and some experimental models, attempts to systematize and classify experimental models, characterises the reasons for choosing a rational model. Based on an analytical study of the literature data, the author of the article found that when choosing an experimental model, it is necessary to consider which type of osteoarthrosis is to be obtained: primary (osteoarthrosis, having endogenous – metabolic disturbance) or secondary (post-traumatic). In addition, the choice of the experimental model of the cartilage tissue pathology is influenced by the type, age and physiological condition of the animal used in the experiment, which affects the depth and quality of osteoarthritis reproducibility. In general, the content of the article does not claim to be complete and aims to systematize the existing experimental models of cartilage pathology, as well as to help in choosing the most optimal model and type of experimental animal to recreate the pathological process in osteoarthrosis purely.

 

References

Nosivets, Dm. S. (2013) Farmakolohiia khondroprotektoriv (ogliad farmatsevtychnoho rynku Ukrainy) [Pharmacology of Chondroprotectors (Review Pharmaceutical Market of Ukraine)]. Visnyk problem biolohii ta medytsyny, 4(1), 57–63. [in Ukrainian].

Mamchur, V. I. & Nosyvets, D. S. (2018) Farmakologicheskie svojstva i klinicheskaya e'ffektivnost' preparata Alflutop pri lechenii patologii oporno-dvigatel'nogo apparata [Pharmacological properties and clinical efficacy of Alflutop in the treatment of musculoskeletal diseases]. Travma, 19(1), 6–12. [in Russian]. doi: 10.22141/1608-1706.1.19.2018.126660

Makushin, V. D., Stepanov, M. A. & Stupina, T. A. (2012) E'ksperimental'noe modelirovanie osteoartroza kolennogo sustava u sobak [Experimental modeling of the knee osteoarthrosis in dogs]. Biomedicina, 3, 108–115. [in Russian].

Davydov, V. B. (2012) Metody e'ksperimental'nogo modelirovaniya osteoartrozov u melkikh e'ksperimental'nyh zhivotnykh [Methods of experimental modeling of experimental osteoarthritis in small animal]. Retrieved from http://www.vethospital.ru/archives/43/ [in Russian].

Mamchur, V. I., Nosivec, D. S., Naletov, S. V., Guryanov, V. G., Palamarchuk, V. I. & Ogol, A. Zh. (2017) Racional'naya farmakoterapiya bolevogo sindroma razlichnogo geneza kombinirovannymi nesteroidnymi protivovospalitel'nymi sredstvami [Rational pharmacotherapy of pain syndrome of various genesis with combined non-steroidal anti-inflammatory drugs]. Kyiv : Vipol. [in Russian].

Opryshko, V. I. & Nosyvets, D. S. (2018) Sistemnyj obzor mezhdunarodnykh issledovanij po primeneniyu Alflutopa v kompleksnoj farmakoterapii bolevogo sindroma v oblasti spiny [Systemic review of international studies on the use of Alflutop in the comprehensive pharmacotherapy of back pain]. Mizhnarodnyi nevrolohichnyi zhurnal, 1(95), 64–69. [in Russian]. doi: 10.22141/2224-0713.1.95.2018.127415

Kovalenko, V. M., Viktorov, O. P., Korzh, M. O., Dedukh, N. V. & Lisenko, I. V. (2007) Patent. 79206 Ukraina, MPK8 G 09 V 23/28. Sposib modeliuvannia osteoartrozu z sinoviitom [Patent. 79206 Ukraine, MPK8 G 09 V 23/28. Method of osteoarthrosis modeling with synovitis]. Biul., 7. [in Ukrainian].

Lu, Z., Liu, Q., Liu, L., Wu, H., Zheng, L., & Zhao, J. M. (2018) A novel synthesized sulfonamido-based gallate-jeztc blocks cartilage degradation on rabbit model of osteoarthritis: an in vitro and in vivo study. Cell Physiol Biochem., 49(6), 2304–2319. doi: 10.1159/000493832

Chang, A., & Tang, S. Y. (2018) Determination of the depth- and time- dependent mechanical behavior of mouse articular cartilage using cyclic reference point indentation. Cartilage, 18, 1947603518786554. doi: 10.1177/1947603518786554

Liu, G., Zhang, L., Zhou, X., Zhang, B. L., Guo, G. X., Xu, P., et al. (2018) Selection and investigation of a primate model of spontaneous degenerative knee osteoarthritis, the cynomolgus monkey (macaca fascicularis). Med Sci Monit, 24, 4516–4527. doi: 10.12659/MSM.908913

Kimura, Y. (1994) Morphological changes in the knee joint of rat by intra-articular injection of vitamin A. Nippon Seikeigeka Gakkai Zasshi, 68, 572–584.

Vishnevskiy V. A. & Malyishkina S. V. (2004) Modelirovanie artroza putem vvedeniya deksametazona v kolennyy sustav krysy [Modeling arthrosis by injecting dexamethasone into a rat's knee joint]. Ortopediya, travmatologiya i protezirovanie, 4, 76–80. [in Russian].

Gou, Y., Tian, F., Kong, Q., Chen, T., Li, H., Lv, Q., & Zhang, L. (2018) Salmon Calcitonin Attenuates Degenerative Changes in Cartilage and Subchondral Bone in Lumbar Facet Joint in an Experimental Rat Model. Med Sci Monit, 24, 2849–2857. doi: 10.12659/MSM.910012

Baragi, V. M., Becher, G., Bendele, A. M., Biesinger, R., Bluhm, H., Boer, J., et al. (2009) A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum, 60(7), 2008–18. doi: 10.1002/art.24629

Takahashi, I., Matsuzaki, T., Kuroki, H., & Hoso, M. (2018) Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One, 13(4), e0196625. doi: 10.1371/journal.pone.0196625

Chandran, P., Pai, M., Blomme, E. A., Hsieh, G. C., Decker, M. W., & Honore, P. (2009) Pharmacological modulation of movement-evoked pain in a rat model of osteoarthritis. Eur. J. Pharmacol, 613(1–3), 39–45. doi: 10.1016/j.ejphar.2009.04.009

Schuelert, N., & McDougall, J. (2009) Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neurosci. Lett, 465(2), 184–8. doi: 10.1016/j.neulet.2009.08.063

Yoo, S. A., Park, B. H., Yoon, H. J., Lee, J. Y., Song, J. H., Kim, H. A., et al. (2007) Calcineurin modulates the catabolic and anabolic activity of chondrocytes and participates in the progression of experimental osteoarthritis. Arth. Rheum, 56(7), 2299–2311. https://doi.org/10.1002/art.22731

Botter, S. M., van Osch, G. J., Waarsing, J. H., van der Linden, J. C., Verhaar, J. A., Pols, H. A., et al. (2008) Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarth. Cartil, 16(4), 506–514. doi: 10.1016/j.joca.2007.08.005

Kikuchi, T., Sakuta, T., & Yamaguchi, T. (1998) Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. Osteoarthritis Cartilage, 6(3), 177–186. doi: 10.1053/joca.1998.0110

Bian, Y., Zhang, M., & Wang, K. (2018) Taurine protects against knee osteoarthritis development in experimental rat models. Knee, 25(3), 374–380. doi: 10.1016/j.knee.2018.03.004

Kim, J. E., Song, D. H., Kim, S. H., Jung, Y., & Kim, S. J. (2018) Development and characterization of various osteoarthritis models for tissue engineering. PLoS One, 13(3), e0194288. doi: 10.1371/journal.pone.0194288

Lindström, E., Rizoska, B., Tunblad, K., Edenius, C., Bendele, A. M., Maul, D. et al. (2018) The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J Transl Med, 16(1), 56. doi: 10.1186/s12967-018-1425-7

Deng, S., Zhou, J. L., Peng, H., Fang, H. S., Liu, F., & Weng, J. Q. (2018) Local intraarticular injection of vascular endothelial growth factor accelerates articular cartilagedegeneration in rat osteoarthritis model. Mol Med Rep, 17(5), 6311–6318. doi: 10.3892/mmr.2018.8652

Choudhary, D., Kothari, P., Tripathi, A. K., Singh, S., Adhikary, S., Ahmad, N., et al. (2018) Spinacia oleracea extract attenuates disease progression and sub-chondral bone changes in monosodium iodoacetate-induced osteoarthritis in rats. BMC Complement Altern Med, 18(1), 69. doi: 10.1186/s12906-018-2117-9

Geest, T., Roeleveld, D. M., Walgreen, B., Helsen, M. M., Nayak, T. K., Klein, C., et al. (2018) Imaging fibroblast activation protein to monitor therapeutic effects of neutralizing interleukin-22 in collagen-induced arthritis. Rheumatology (Oxford), 57(4), 737–747. doi: 10.1093/rheumatology/kex456

Kotelnikov, G. P., Lartsev, Yu. V., & Makhova, A. N. (2006) Sravnitel'naya ocenka strukturnykh izmenenij tkanej sustava pri razlichnykh modelyakh e'ksperimental'nogo artroza [Comparative evaluation of structural changes of joint tissues in various models of experimental arthrosis]. Kazanskij medicinskij zhurnal, 87(1), 31–35. [in Russian].

Koval’ov, G. A., Vvedenskyy, B. P. & Sandomirskiy, B. P. (2010) Tekhnologiya modelirovaniya osteoartroza krupnykh sustavov [Technology of modeling of large joints osteoarthrosis]. Biotekhnologiya, 3(4), 37–43. [in Russian].

Ma, Y., Guo, H., Bai, F., Zhang, M., Yang, L., Deng, J., & Xiong, L. (2018) A rat model of knee osteoarthritis suitable for electroacupuncture study. Exp Anim, 67(2), 271–280. doi: 10.1538/expanim.17-0142

Jean, Y. H., Wen, Z. H., Chang, Y. C., Hsieh, S. P., Tang, C. C., Wang, Y. H., & Wong, C. S. (2007) Intraarticular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament transected knee in rats: role of excitatory amino acids. Osteoarth. Cartil, 15(6), 638–645. doi: 10.1016/j.joca.2006.11.008

Smith, G. Jr., Myers, S. L., Brandt, K. D., Mickler, E. A., & Albrecht, M. E. (2005) Effect of intraarticular hyaluronan injection on vertical ground reaction force and progression of osteoarthritis after anterior cruciate ligament transaction. J. Rheumatol, 32(2), 325–334.

Batiste, D. L., Kirkley, A., Laverty, S., Thain, L. M., Spouge, A. R., & Holdsworth, D. W. (2004) Exvivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarth. Cartil, 12(12), 986–996. doi: 10.1016/j.joca.2004.08.010

Hayami, T., Pickarski, M., Wesolowski, G., McLane, J., Bone, A., Destefano, J., et al. (2004) The role of subchondral bone remodeling in osteoarthritis: Reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arth. Rheum, 50(4), 1193–1206. doi: 10.1002/art.20124

Marshall, K. W., & Chan, A. D. (1996) Arthroscopic anterior cruciate ligament transection induces canine osteoarthritis. J. Rheumatol, 23(2), 338–343.

Pastoureau, P., Chomel, A., & Bonnet, J. (1999) Evidence of early subchondral bone changes in the meniscectomized guinea pig. A densitometric study using dual-energy X-ray absorptiometry subregional analysis. Osteoarth. Cartilage, 7(5), 466–473. doi: 10.1053/joca.1999.0241

Żylińska, B., Stodolak-Zych, E., Sobczyńska-Rak, A., Szponder, T., Silmanowicz, P., Łańcut, M., et al. (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo, 31(5), 895–903. doi: 10.21873/invivo.11144

Janusz, M. J., Bendele, A. M., Brown, K. K., Taiwo, Y. O., Hsieh, L., & Heitmeyer, S. A. (2002) Induction of osteoarthritis in the rat by surgical tear of the meniscus: іnhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarth. Cartil, 10(10), 785–791. doi: 10.1053/joca.2002.0823

Hayami, T., Pickarski, M., Zhuo, Y., Wesolowski, G. A., Rodan, G. A., & Duong, L. T. (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone, 38(2), 234–243. doi: 10.1016/j.bone.2005.08.007

Ungur, R. A., Florea, A., Tăbăran, A. F., Scurtu, I. C., Onac, I., Borda, I. M., et al. (2017) Chondroprotective effects of pulsed shortwave therapy in rabbits with experimental osteoarthritis. Rom J Morphol Embryol, 58(2), 465–472.

Ramekura, S., Hoshi, K., Shimoaka, T., Chung, U., Chikuda, H., Yamada, T., et al. (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarth. Cartil, 13(7), 632–641. doi: 10.1016/j.joca.2005.03.004

Ma, H. L., Blanchet T. J., Peluso D., Hopkins, B., Morris, E. A., & Glasson, S. S. (2007) Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage, 15(6), 695–700. doi: 10.1016/j.joca.2006.11.005

Baek, J. H., Chun, Y. S., Rhyu, K. H., Yoon, W. K., & Cho, Y. J. (2018) Effect of ligamentum teres tear on the development of joint instability and articular cartilagedamage: an in vivo rabbit study. Anat Sci Int, 93(2), 262–268. doi: 10.1007/s12565-017-0406-x

Marijnissen, A. C., Roermund, P. M., TeKoppele, J. M., Bijlsma, J. W., & Lafeber, F. P. (2002) The canine «groove» model, compared with the ACLT model of osteoarthritis. Osteoarth. Cartil, 10(2), 145–155. doi: 10.1053/joca.2001.0491

Hulevskyi, O. K., Ivanov, H. V. & Ivanov, E. H. (2009) Patent 42133 Ukraina, MPK G09B 23/00. Sposib modeliuvannia mekhanichnoho mizhvyrostkovoho defektu suhlobnoho khriascha [Patent 42133 Ukraine, IPC G09B 23/00. Method of modeling of mechanical intervertebral defect of articular cartilage]. Biuleten, 12. [in Ukrainian].

Watanabe, K., Oue, Y., & Ikegawa, S. (2011) Animal models for bone and joint disease. Mouse models develop spontaneous osteoarthritis. Clin Calcium, 21(2), 286–293. doi: CliCa1102286293

Glasson, S. S. (2007) In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets, 8(2), 367–376. doi: 10.2174/138945007779940061

Kurpyakov, A. P. (2009). E'ksperimental'nye modeli dlya issledovaniya povrezhdeniya i reparacii sustavnogo khryascha sinovial'nykh sustavov (Avtoref. dis…kand. med. nauk) [Experimental models for the study of damage and repair of the articular cartilage of synovial joints]. (Extended abstract of candidate’s thesis). Moscow. [in Russian].

Galois, L., Etienne, S., Grossin, L., Watrin-Pinzano, A., Cournil-Henrionnet, C., Loeuille, D., et al. (2004) Doseresponse relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarth. Cartil, 12(10), 779–786. doi: 10.1016/j.joca.2004.06.008

Ozkan, F. U., Ozkan, K., Ramadan, S., & Guven, Z. (2009) Chondroprotective effect of N-acetylglucosamine and hyaluronate in early stages of osteoarthritis - an experimental study in rabbits. Bull. NYU Hosp. Jt. Dis, 67(4), 352–357.

Fernihough, J., Gentry, C., Malcangio, M., Fox, A., Rediske, J., Pellas, T., et al. (2004) Pain related behaviour in two models of osteoarthritis in the rat knee. Pain, 112(1–2), 83–93. doi: 10.1016/j.pain.2004.08.004

Flannery, C., Zollner, R., Corcoran, C., Jones, A. R., Root, A., Rivera-Bermúdez, M. A., et al. (2009) Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arth. Rheum, 60(3), 840–847. doi: 10.1002/art.24304

Little, C. B., & Zaki, S. (2012) What constitutes an "animal model of osteoarthritis"--the need for consensus? Osteoarthritis Cartilage, 20(4), 261–267. doi: 10.1016/j.joca.2012.01.017

Dai, G., Wang, S., Li, J., Liu, C., & Liu, Q. (2006) The validity of osteoarthritis model induced by bilateral ovariectomy in guinea pig. J. Huazhong Univ. Sci. Technol, 26(6), 716–719. doi: 10.1007/s11596-006-0624-2

Sim, B. Y., Choi, H. J., Kim, M. G., Jeong, D. G., Lee, D. G., Yoon, J. M., et al. (2018) Effects of ID-CBT5101 in preventing and alleviating osteoarthritis symptoms in a monosodium iodoacetate-induced rat model. J Microbiol Biotechnol, 28(7), 1199–1208. doi: 10.4014/jmb.1803.03032

How to Cite

1.
Nosivets DS. Experimental models of cartilage tissue pathology. Zaporozhye medical journal [Internet]. 2019Jul.15 [cited 2024Apr.19];(4). Available from: http://zmj.zsmu.edu.ua/article/view/173362

Issue

Section

Review