Impact of prooxidant-antioxidant imbalance on the biological age and the rate of aging in arterial hypertension with type 2 diabetes mellitus

Authors

  • V. D. Nemtsova Kharkiv National Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2020.1.194475

Keywords:

hypertension, type 2 diabetes mellitus, aging, oxidative stress

Abstract

 

Purpose: to study the state of oxidative-antioxidative balance and its influence on the biological age (BA) and the features of aging in patients with a comorbid course of arterial hypertension (AH) and type 2 diabetes mellitus (T2DM).

Materials and methods. In 96 patients with II stage AH and T2DM and 40 patients with isolated II stage AH (IAH), a BA, rate of aging (according to the method of V. P. Voytenko et al.) and oxidative stress (OS) indexes (activity of glutathione peroxidase, serum levels of sulfhydryl groups, malonic dialdehyde, 8-hydroxy-2-deoxyguanosine) were investigated.

Results. In IAH patients, physiological aging (PhA) was detected in 12.5 %, delayed type of aging (DTA) – in 55.0 %, accelerated type of aging (ATA) – in 32.5 %. In AH and T2DM, PhA was in 9.4 %, DTA – in 31.3 %, ATA – in 59.4 % of patients. Only 5 patients (12.5 %) with IAH and 3 patients (3.13 %) with AH and T2DM had no signs of OS. The patients with ATA in comorbid pathology were characterized by a significant activation of oxidative and stimulation of antioxidant systems compared to those with DTA, which was less common among IAH patients. The presence of correlations between the antioxidant system indicators and age parameters characterizing the degree of aging was found.

Conclusions. OS, which is one of the significant factors resulting in premature aging, was more enhanced in AH and T2DM than in IAH. OS manifestations were more significant in ATA regardless of nosology, but were more pronounced in AH and T2DM. Therefore, OS evaluation together with age-related characteristics can be used both to assess an organism state and as an integral indicator characterizing the effectiveness of therapeutic and preventive measures.

References

Kononova, N. Yu., Chernyshova, T. E., & Zagrtdinova, R. M. (2017). Otsenka biologicheskogo vozrasta i tempa stareniya u patsientok s nedifferentsirovannoi displaziei soedinitel'noi tkani [Assessment of biological age and rate of aging of patients with undifferentiated connective tissue dysplasia]. Archive of Internal Medicine, 7(4), 287–291. https://doi.org/10.20514/2226-6704-2017-7-4-287-291 [in Russian].

Sebastiani, P., Thyagarajan, B., Sun, F., Schupf, N., Newman, A. B., Montano, M., & Perls, T. T. (2017). Biomarker signatures of aging. Aging Cell, 16(2), 329–338. https://doi.org/10.1111/acel.12557

Mitnitski, A., Song, X., & Rockwood, K. (2013). Assessing biological aging: the origin of deficit accumulation. Biogerontology, 14(6), 709–717. https://doi.org/10.1007/s10522-013-9446-3

Zhang, W.-G., Zhu, S.-Y., Bai, X.-J., Zhao, D.-L., Jiang, S.-M., Li, J., Li, Z.-X., Fu, B., Cai, G.-Y., Sun, X.-F., & Chen, X.-M. (2014). Select aging biomarkers based on telomere length and chronological age to build a biological age equation. AGE, 36(3), 9639. https://doi.org/10.1007/s11357-014-9639-y

Chernysheva, E. N., Panova, T. N., & Donskaya, M. G. (2013). Protsessy perekisnogo okisleniya lipidov i prezhdevremennoe starenie pri metabolicheskom sindrome [The process of lipid peroxidation and senilism due metabolic syndrome]. Kuban Scientific Medical Herald, (1), 181 184. [in Russian].

Kalinchenko, S. Yu., Vorslov, L. O., Tyuzikov, I. A., & Tishova, Yu. A. (2014). Okislitel'nyi stress kak prichina sistemnogo stareniya. Rol' preparatov α-lipoevoi kisloty (Espa-Lipon) v lechenii i profilaktike vozrast-assotsiirovannykh zabolevanii [Oxidative stress as cause of systemic aging. Role of α-lipoic acid (Espa-Lipon) in the treatment and prevention of age-associated diseases]. Farmateka, (6), 43 54. [in Russian].

Höhn, A., Weber, D., Jung, T., Ott, C., Hugo, M., Kochlik, B., Kehm, R., König, J., Grune, T., & Castro, J. P. (2017). Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biology, 11, 482–501. https://doi.org/10.1016/j.redox.2016.12.001

Ahaladze, N., & Ena, L. (2009). Biologicheskii vozrast cheloveka: otsenka tempa stareniya, sostoyaniya zdorov'ya i zhiznesposobnosti [Human biological age: assessment of the rate of aging, health status and vitality]. Kyiv. [in Russian].

Emel'yanov, V. V. (2007). Metabolicheskie faktory uskorennogo stareniya organizma u bolnyh saharnym diabetom 2-go tipa i ih korrektsiya. (Avtoref. dis… dokt. med. nauk) [Metabolic factors of accelerated aging in patients with type 2 diabetes mellitus and their correction. Dr. med. sci. diss.] Chelyabinsk [in Russian].

Barkhudaryan, M. S., Sarkisyan, G. T., & Kogan, V. Yu. (2014). Sravnitelnaya otsenka tempa stareniya i biologicheskogo vozrasta rabotnikov umstvennogo i fizicheskogo truda [Comparative assessment of aging rates and biological age of workers involved in mental and physical work]. Medical Science of Armenia, LIV(2), 81 87. [in Russian].

Mancia, G., Fagard, R., Narkiewicz, K., Redon, J., Zanchetti, A., Böhm, M., Christiaens, T., Cifkova, R., De Backer, G., Dominiczak, A., Galderisi, M., Grobbee, D. E., Jaarsma, T., Kirchhof, P., Kjeldsen, S. E., Laurent, S., Manolis, A. J., Nilsson, P. M., Ruilope, L. M., … Zannad, F. (2014). 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Pressure, 23(1), 3–16. https://doi.org/10.3109/08037051.2014.868629

Inzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A. L., Tsapas, A., Wender, R., & Matthews, D. R. (2015). Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 38(1), 140–149. https://doi.org/10.2337/dc14-2441

Khavinson, V. Kh. (Ed.). (2000). Metody otsenki svobodno radikal'nogo okisleniya i antioksidantnoi sistemy organizma [Assessment methods of free radical oxidation and the antioxidant system of the body]. Foliant. [in Russian].

Dudinskaya, E. N., Tkacheva, O. N., Strazhesko, I. D., & Akasheva, D. U. (2013). Rol' insulinorezistentnosti i ee korrektsii v protsessakh sosudistogo stareniya [Role of insulin resistance and its correction in the processes of vascular aging]. Rational pharmacotherapy in cardiology, 9(2), 163 170. [in Russian].

Barrows, I. R., Ramezani, A., & Raj, D. S. (2019). Inflammation, Immunity, and Oxidative Stress in Hypertension – Partners in Crime? Advances in Chronic Kidney Disease, 26(2), 122–130. https://doi.org/10.1053/j.ackd.2019.03.001

Ito, F., Sono, Y., & Ito, T. (2019). Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants, 8(3), 72. https://doi.org/10.3390/antiox8030072

Zhang, W., Tian, Y., Chen, X., Wang, L., Chen, C., & Qiu, C. (2018). Liraglutide ameliorates beta-cell function, alleviates oxidative stress and inhibits low grade inflammation in young patients with new-onset type 2 diabetes. Diabetology & Metabolic Syndrome, 10, 91. https://doi.org/10.1186/s13098-018-0392-8

Ohara, M., Kohata, Y., Nagaike, H., Koshibu, M., Gima, H., Hiromura, M., Yamamoto, T., Mori, Y., Hayashi, T., Fukui, T., & Hirano, T. (2019). Association of glucose and blood pressure variability on oxidative stress in patients with type 2 diabetes mellitus and hypertension: a cross-sectional study. Diabetology & Metabolic Syndrome, 11, 29. https://doi.org/10.1186/s13098-019-0425-y

Williams, B., Mancia, G., Spiering, W., Rosei, E. A., Azizi, M., Burnier, M., Clement, D. L., Coca, A., Simone, G. de, Dominiczak, A., Kahan, T., Mahfoud, F., Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S. E., Kreutz, R., Laurent, S., … Desormais, I. & ESC Scientific Document Group. (2019). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal, 39(33), 3021 3104. https://doi.org/10.1093/eurheartj/ehy339

Zilov, A. V., Abdelaziz, S. I., AlShammary, A., Al Zahrani, A., Amir, A., Assaad Khalil, S. H., Brand, K., Elkafrawy, N., Hassoun, A. A. K., Jahed, A., Jarrah, N., Mrabeti, S., & Paruk, I. (2019). Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes/Metabolism Research and Reviews, 35(7), Article e3173. https://doi.org/10.1002/dmrr.3173

Kant, M., Akış, M., Çalan, M., Arkan, T., Bayraktar, F., Dizdaroglu, M., & İşlekel, H. (2016). Elevated urinary levels of 8-oxo-2′-deoxyguanosine, (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines, and 8-iso-prostaglandin F2α as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair, 48, 1–7. https://doi.org/10.1016/j.dnarep.2016.09.004

Downloads

How to Cite

1.
Nemtsova VD. Impact of prooxidant-antioxidant imbalance on the biological age and the rate of aging in arterial hypertension with type 2 diabetes mellitus. Zaporozhye Medical Journal [Internet]. 2020Feb.10 [cited 2024Jun.18];22(1). Available from: http://zmj.zsmu.edu.ua/article/view/194475

Issue

Section

Original research