The role of fibrosis biomarkers in predicting the development of myocardial electrical instability (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2021.2.205757Keywords:
aldosterone, galectin 3, TGF-β1, ventricular extrasystoleAbstract
The aim. To analyze scientific researches on studying the biomarkers of fibrosis based on a review of the most recent publications for the possibility to predict electrical myocardial instability development.
In total, 101 sources of literature related to the role of fibrosis biomarkers in the past 5 years were analyzed. The review of the literature has shown that myocardial fibrosis іs considered to be an arrhythmogenic substrate for ventricular arrhythmias, as it provides structural and functional disorders of the cardiac electrical activity. Markers of fibrosis, which are measured in cardiac pathology, allow determining the risk of electrical myocardial instability, which is a pathophysiological mechanism underlying sudden arrhythmic death.
Conclusions. Markers of fibrosis such as aldosterone, galectin-3 and transforming growth factor-β1, which are measured in heart failure, hypertension, metabolic syndrome, myocardial infarction, atrial fibrillation, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, have been found to predict myocardial electrical instability. Prediction of myocardial electrical instability in patients with hypertension and coronary heart disease based on studies of the association between frequent ventricular arrhythmias and plasma biomarkers of fibrosis (aldosterone, galectin-3, and transforming growth factor-β1) has not been discussed in the literature.
References
Anikeeva, T. V. (2016). Suchasni mozhlyvosti otsinky strukturno-funktsionalnoho stanu miokarda u patsiientiv z pisliainfarktnym kardiosklerozom [Current capability of myocardial structure and function assessment in patients with post-infarction cardiosclerosis]. Current aspects of military medicine: collection of research papers of the National Military Medical Clinical Center «Main Military Clinical Hospital» of the Ministry of Defense of Ukraine (Vol. 23, pp. 278-284). [in Ukrainian].
Bobkova, I. N., Shestakova, M. V., & Shcukina, A. A. (2015). Diabeticheskaya nefropatiya - fokus na povrezhdenie podotsitov [Diabetic nephropathy - focus on podocytes damage]. Nefrologiya, 19(2), 33-44. [in Russian].
Voronkov, L. G., Voitsekhovska, K. V., & Parascheniuk, L. P. (2019). Kliniko-instrumentalna kharakterystyka patsiientiv iz khronichnoiu sertsevoiu nedostatnistiu ta znyzhenoiu fraktsiieiu vykydu livoho shlunochka zalezhno vid vtraty masy tila za ostanni 6 misiatsiv [Clinical and instrumental characteristics of patients with chronic heart failure and reduced left ventricular ejection fraction depending on weight loss within the previous 6 months]. Ukrainskyi kardiolohichnyi zhurnal, 26(2), 48-56. https://doi.org/10.31928/1608-635X-2019.2.4856 [in Ukrainian].
Daghar, S. (2017). Diagnosticheskoe znachenie urovnya galektina-3 u bol'nykh gipertroficheskoi kardiomiopatiei [Diagnostic value of galectin-3 level in patients with hypertrophic cardiomyopathy]. ScienceRise: Medical science, (4), 13-18. https://doi.org/10.15587/2519-4798.2017.99566 [in Russian].
Zhuravlyova, L. V., & Kulikova, M. V. (2019). Biomarkery sertsevoi nedostatnosti: novi mozhlyvosti diahnostyky [Biomarkers of heart failure: new diagnostic possibilities]. Liky Ukrainy, (3), 12-14. https://doi.org/10.37987/1997-9894.2019.3(229).185077 [in Ukrainian].
Ionin, V. A., Zaslavskaya, E. L., Soboleva, A. V., Baranova, E. I., Listopad, O. V., Nifontov, S. E., Conrady, A. O., & Shlyakhto, E. V. (2016). Galektin-3 u patsientov s paroksizmal'noi i persistiruyushchei formami fibrillyatsii predserdii i metabolicheskim sindromom [Galectin-3 in Patients With Paroxysmal and Persistent Atrial Fibrillation and Metabolic Syndrome]. Kardiologiya, 56(6), 41-45. https://doi.org/10.18565/cardio.2016.6.17-22 [in Russian].
Ionin, V. A., Soboleva, A. V., Listopad, O. V., Nifontov, S. E., Bazhenova, E. A., Vasilieva, E. Yu., Baranova, E. I., & Shlyakhto, E. V. (2015). Galektin 3 i al'dosteron u patsientov s fibrillyatsiei predserdii i metabolicheskim sindromom [Galectin 3 and aldosterone in patients with atrial fibrillation and metabolic syndrome]. Rossiyskiy kardiologicheskiy zhurnal, 20(4), 79-83. https://doi.org/10.15829/1560-4071-2015-04-79-83 [in Russian].
Ivanov, V. P., Danilevich, T. D., & Kovalchuk, O. V. (2016). Rol halektynu-3 u rozvytku i pidtrymanni fibryliatsii peredserd [The role of galectin-3 in the development and maintenance of atrial fibrillation]. Acta medica Leopoliensia, 22(3), 73-78. [in Ukrainian].
Ipatov, A. V., Lysunets, O. M., Khaniukova, I. Ya., Tkachenko, J. V., Ovdii, M. O., Zubko, I. M., Birets, N. M., & Volkova, L. V. (2017). Pervynna invalidnist vnaslidok providnykh khvorob systemy krovoobihu v Ukraini (2015-2016 rr.) [Primary disability due to leading diseases of the cardiovascular system in Ukraine (2015-2016)]. Bukovynskyi medychnyi visnyk, 21(2), 197-202. https://doi.org/10.24061/2413-0737.XXI.2.82.1.2017.43 [in Ukrainian].
Kovalenko, V. M., & Dorogoi, A. P. (2016). Sertsevo-sudynni khvoroby: medychno-sotsialne znachennia ta stratehiia rozvytku kardiolohii v Ukraini [Cardiovascular disease: medical and social value and strategy of cardiology in Ukraine]. Ukrainskyi kardiolohichnyi zhurnal, (Suppl. 3), 5-14. [in Ukrainian].
Kozhukhov, S. M., & Parkhomenko, O. M. (2016). Sertseva nedostatnist zi zberezhenoiu fraktsiieiu vykydu livoho shlunochka [Heart failure with preserved left ventricular ejection fraction]. Meditsina neotlozhnykh sostoyanii, (1), 126-130. [in Ukrainian].
Kozhukhov, S. M., & Parkhomenko, O. M. (2015). Nauchnye dokazatel'stva effektivnosti eplerenona u bol'nykh s disfunktsiei levogo zheludochka: ot infarkta miokarda k serdechnoi nedostatochnosti [Scientific evidence of efficiency of еplerenone in patients with left ventricular dysfunction: from myocardial infarction to heart failure]. Ukrainskyi kardiolohichnyi zhurnal, (1), 105-111. [in Russian].
Lysunets, O. M., Khanyukova, I. Ya., Tkachenko, Yu. V., Zubko, I. M., Birets, N. M., Sanina, I. V., & Volkova, L. V. (2015). Medyko-sotsialna ekspertyza u patsiientiv z ishemichnoiu khvoroboiu sertsia pislia revaskuliaryzatsii miokardu [Medical and social examination in patients with ischemic disease heart after myocardial revascularization]. Ukrainskyi visnyk medyko-sotsialnoi ekspertyzy, (4), 17-25. [in Ukrainian].
Polunina, E. A., Klimchuk, D. O., Polunina, O. S., Sevost'yanova, I. V., & Voronina, L. P. (2017). Vzaimosvyaz' mezhdu remodelirovaniem lineinykh razmerov aorty, levogo predserdiya i urovnem s-kontsevogo telopeptida kollagena I tipa u bol'nykh khronicheskoi serdechnoi nedostatochnost'yu [The relationship between the remodeling of the linear dimensions of the aorta, left atrium, and levels of c-terminal telopeptide of type I collagen in patients with chronic heart failure]. Astrakhanskii meditsinskii zhurnal, 12(2), 69-75. [in Russian].
Psarova, V. G. (2019). Osoblyvosti aktyvnosti okremykh komponentiv renin-anhiotenzyn-aldosteronovoi systemy pry hipertonichnii khvorobi ta suputnomu ozhyrinni [Features of the Activity of Separate Components of the Renin-Angiotensin-Aldosterone System in Arterial Hypertension and Concomitant Obesity]. Ukrainskyi zhurnal medytsyny, biolohii ta sportu, 4(2), 168-172. https://doi.org/10.26693/jmbs04.02.168 [in Ukrainian].
Ruzhanska, V. O., Sivak, V. G., Lozynska, M. S., & Zhebel, V. M. (2018). Halektyn-3 yak marker funktsii miokardu u cholovikiv 40-60 rokiv bez sertsevo-sudynnoi patolohii, nosiiv polimorfnykh heniv AT1R [Galectin-3 as a marker of myocardial function in men 40-60 years without cardiovascular pathology, carriers of polymorphic genes AT1R]. Problemy ekolohii ta medytsyny, 22(1-2), 33-37. [in Ukrainian].
Savich, V. V. (2018). Disbalans metabolizma kollagena І tipa v soedinitel'notkannom matrikse miokarda kak patogeneticheskoe zveno ego fibrozirovaniya pri arterial'noi gipertonii [The imbalance of type I collagen metabolism in the connective tissue matrix of the myocardium as a pathogenetic link of fibrosis in arterial hypertension]. Modern strategies and technologies in prevention, diagnosis, treatment and rehabilitation for patients of different ages suffering from chronic non-infectious diseases: Proceedings of the International Scientific and Practical Conference. (pp. 251-259). Kursk. [in Russian].
Syvolap, S. V., & Lashkul, D. A. (2015). Markery fibrozu miokarda ta funktsiia nyrok u khvorykh na khronichnu sertsevu nedostatnist ishemichnoho henezu z fibryliatsiieiu peredserd [Markers of myocardial fibrosis and renal function in patients with ischemic chronic heart failure and atrial fibrillation]. Ukrainskyi medychnyi chasopys, (3), 77-79. [in Ukrainian].
Tashchuk, V. K., Polianska, O. S., & Gulaga, O. I. (2018). Vplyv aldosteronu na markery kolahenoutvorennia u khvorykh na infarkt miokarda pry nyrkovii dysfunktsii [Effect of aldosterone on collagen formation markers in patients with myocardial infarction and renal dysfunction]. Zaporozhye medical journal, 20(4), 467-470. https://doi.org/10.14739/2310-1210.2018.4.135791 [in Ukrainian].
Trisvetova, E. L. (2015). Lozartan v lechenii arterial'noi gipertenziii komorbidnosti: dostizhenie neskol'kikh tselei [Losartan in the treatment of hypertension and comorbidity: achieving several goals]. Mezhdunarodnye obzory: klinicheskaya praktika i zdorov'e, (1), 75-86. [in Russian].
Tseluyko, V. Y., & Daghar, S. (2016). Uroven' galektina-3 u bol'nykh gipertroficheskoi kardiomiopatiei [Level of galectin-3 in patients with hypertrophic cardiomyopathy]. Sertse i sudyny, (4), 47-52. [in Russian].
Shilyaeva, N. V., Shchukin, Yu. V., Limareva, L. V., & Danilchenko, O. P. (2018). Biomarkery miokardial'nogo stressa i fibroza v opredelenii klinicheskikh iskhodov u patsientov s serdechnoi nedostatochnost'yu, perenesshikh infarkt miokarda [Biomarkers of myocardial stress and fibrosis for clinical outcomes assessment in post myocardial infarction heart failure patients]. Rossiiskii kardiologicheskii zhurnal, 23(1), 32-36. https://doi.org/10.15829/1560-4071-2018-1-32-36 [in Russian].
Yalovenko, M. I., & Khaniukov, O. O. (2018). Osoblyvosti perebihu arterialnoi hipertenzii v patsiientiv z ishemichnoiu khvoroboiu sertsia ta fibryliatsiieiu peredserd [Features of the arterial hypertension clinical course in patients with ischemic heart disease and atrial fibrillation]. Medychni perspektyvy, 23(4), 81-87. https://doi.org/10.26641/2307-0404.2018.4.153005 [in Ukrainian].
Arnar, D. O., Mairesse, G. H., Boriani, G., Calkins, H., Chin, A., Coats, A., Deharo, J. C., Svendsen, J. H., Heidbüchel, H., Isa, R., Kalman, J. M., Lane, D. A., Louw, R., Lip, G., Maury, P., Potpara, T., Sacher, F., Sanders, P., Varma, N., Fauchier, L., … EHRA Scientific Documents Committee. (2019). Management of asymptomatic arrhythmias: a European Heart Rhythm Association (EHRA) consensus document, endorsed by the Heart Failure Association (HFA), Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), Cardiac Arrhythmia Society of Southern Africa (CASSA), and Latin America Heart Rhythm Society (LAHRS). EP Europace, Article euz046. https://doi.org/10.1093/europace/euz046
Aro, A. L. (2020). Will electrocardiographic detection of myocardial fibrosis work? Heart, 106(13), 958-959. https://doi.org/10.1136/heartjnl-2020-316646
Azibani, F., Pfeffer, T. J., Ricke‐Hoch, M., Dowling, W., Pietzsch, S., Briton, O., Baard, J., Abou Moulig, V., König, T., Berliner, D., Libhaber, E., Schlothauer, S., Anthony, J., Lichtinghagen, R., Bauersachs, J., Sliwa, K., & Hilfiker‐Kleiner, D. (2020). Outcome in German and South African peripartum cardiomyopathy cohorts associates with medical therapy and fibrosis markers. ESC Heart Failure, 7(2), 512-522. https://doi.org/10.1002/ehf2.12553
Bošnjak, I., Selthofer-Relatić, K., & Včev, A. (2015). Prognostic Value of Galectin-3 in Patients with Heart Failure. Disease Markers, 2015, Article 690205. https://doi.org/10.1155/2015/690205
Chen, S., Zhang, Y., Lighthouse, J. K., Mickelsen, D. M., Wu, J., Yao, P., Small, E. M., & Yan, C. (2020). A Novel Role of Cyclic Nucleotide Phosphodiesterase 10A in Pathological Cardiac Remodeling and Dysfunction. Circulation, 141(3), 217-233. https://doi.org/10.1161/circulationaha.119.042178
Cheng, R., Dang, R., Zhou, Y., Ding, M., & Hua, H. (2017). MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Human Cell, 30(3), 192-200. https://doi.org/10.1007/s13577-017-0163-0
Chiasson, V., Takano, A., Guleria, R. S., & Gupta, S. (2019). Deficiency of MicroRNA miR-1954 Promotes Cardiac Remodeling and Fibrosis. Journal of the American Heart Association, 8(21), Article e012880. https://doi.org/10.1161/JAHA.119.012880
Clementy, N., Piver, E., Bisson, A., Andre, C., Bernard, A., Pierre, B., Fauchier, L., & Babuty, D. (2018). Galectin-3 in Atrial Fibrillation: Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences, 19(4), Article 976. https://doi.org/10.3390/ijms19040976
Di Tano, G., Caretta, G., De Maria, R., Parolini, M., Bassi, L., Testa, S., & Pirelli, S. (2016). Galectin-3 predicts left ventricular remodelling after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. Heart, 103(1), 71-77. https://doi.org/10.1136/heartjnl-2016-309673
Díez, J., González, A., & Kovacic, J. C. (2020). Myocardial Interstitial Fibrosis in Nonischemic Heart Disease, Part 3/4. Journal of the American College of Cardiology, 75(17), 2204-2218. https://doi.org/10.1016/j.jacc.2020.03.019
Dorn, L. E., Petrosino, J. M., Wright, P., & Accornero, F. (2018). CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 121, 205-211. https://doi.org/10.1016/j.yjmcc.2018.07.130
Dörr, O., Walther, C., Liebetrau, C., Keller, T., Sommer, T., Boeder, N., Bayer, M., Bauer, P., Möllmann, H., Gaede, L., Troidl, C., Voss, S., Bauer, T., Hamm, C. W., & Nef, H. (2018). Galectin-3 and ST2 as predictors of therapeutic success in high-risk patients undergoing percutaneous mitral valve repair (MitraClip). Clinical Cardiology, 41(9), 1164-1169. https://doi.org/10.1002/clc.22996
Dworatzek, E., Mahmoodzadeh, S., Schriever, C., Kusumoto, K., Kramer, L., Santos, G., Fliegner, D., Leung, Y. K., Ho, S. M., Zimmermann, W. H., Lutz, S., & Regitz-Zagrosek, V. (2019). Sex-specific regulation of collagen I and III expression by 17β-Estradiol in cardiac fibroblasts: role of estrogen receptors. Cardiovascular Research, 115(2), 315-327. https://doi.org/10.1093/cvr/cvy185
Fedorchenko, M. V., Seredyuk, N. M., & Petrovskyi, R. V. (2019). Influence of trimetazidine and levocarnitine on clinical course, structural and functional changes and myocardial fibrosis in patients with myocardial infarction. Wiadomości Lekarskie, 72(11. Pt. 1), 2094-2098.
Ferreira, J. P., Duarte, K., Montalescot, G., Pitt, B., de Sa, E. L., Hamm, C. W., Flather, M., Verheugt, F., Shi, H., Turgonyi, E., Orri, M., Rossignol, P., Vincent, J., & Zannad, F. (2017). Effect of eplerenone on extracellular cardiac matrix biomarkers in patients with acute ST-elevation myocardial infarction without heart failure: insights from the randomized double-blind REMINDER Study. Clinical Research in Cardiology, 107(1), 49-59. https://doi.org/10.1007/s00392-017-1157-3
Ferreira, J. P., Machu, J.-L., Girerd, N., Jaisser, F., Thum, T., Butler, J., González, A., Diez, J., Heymans, S., McDonald, K., Gyöngyösi, M., Firat, H., Rossignol, P., Pizard, A., & Zannad, F. (2017). Rationale of the FIBROTARGETS study designed to identify novel biomarkers of myocardial fibrosis. ESC Heart Failure, 5(1), 139-148. https://doi.org/10.1002/ehf2.12218
Filipe, M. D., Meijers, W. C., Rogier van der Velde, A., & de Boer, R. A. (2015). Galectin-3 and heart failure: Prognosis, prediction & clinical utility. Clinica Chimica Acta, 443, 48-56. https://doi.org/10.1016/j.cca.2014.10.009
Francia, P., Adduci, C., Semprini, L., Borro, M., Ricotta, A., Sensini, I., Santini, D., Caprinozzi, M., Balla, C., Simmaco, M., & Volpe, M. (2014). Osteopontin and Galectin‐3 Predict the Risk of Ventricular Tachycardia and Fibrillation in Heart Failure Patients with Implantable Defibrillators. Journal of Cardiovascular Electrophysiology, 25(6), 609-616. https://doi.org/10.1111/jce.12364
Fu, B., Su, Y., Ma, X., Mu, C., & Yu, F. (2018). Scoparone attenuates angiotensin II-induced extracellular matrix remodeling in cardiac fibroblasts. Journal of Pharmacological Sciences, 137(2), 110-115. https://doi.org/10.1016/j.jphs.2018.05.006
Gao, L., Wang, L., Liu, Z., Jiang, D., Wu, S., Guo, Y., Tao, H., Sun, M., You, L., Qin, S., Cheng, X., Xie, J., Chang, G., & Zhang, D. (2020). TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways. Cell Death & Disease, 11(1), Article 44. https://doi.org/10.1038/s41419-020-2243-4
Gong, M., Cheung, A., Wang, Q., Li, G., Goudis, C. A., Bazoukis, G., Lip, G. Y. H., Baranchuk, A., Korantzopoulos, P., Letsas, K. P., Tse, G., & Liu, T. (2020). Galectin‐3 and risk of atrial fibrillation: A systematic review and meta‐analysis. Journal of Clinical Laboratory Analysis, 34(3), Article e23104. https://doi.org/10.1002/jcla.23104
Gupta, S. K., Itagaki, R., Zheng, X., Batkai, S., Thum, S., Ahmad, F., Van Aelst, L. N., Sharma, A., Piccoli, M.-T., Weinberger, F., Fiedler, J., Heuser, M., Heymans, S., Falk, C. S., Förster, R., Schrepfer, S., & Thum, T. (2016). miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovascular Research, 110(2), 215-226. https://doi.org/10.1093/cvr/cvw030
Holmström, L., Haukilahti, A., Vähätalo, J., Kenttä, T., Appel, H., Kiviniemi, A., Pakanen, L., Huikuri, H. V., Myerburg, R. J., & Junttila, J. (2020). Electrocardiographic associations with myocardial fibrosis among sudden cardiac death victims. Heart, 106(13), 1001-1006. https://doi.org/10.1136/heartjnl-2019-316105
Huang, X., Yue, Z., Wu, J., Chen, J., Wang, S., Wu, J., Ren, L., Zhang, A., Deng, P., Wang, K., Wu, C., Ding, X., Ye, P., & Xia, J. (2018). MicroRNA-21 Knockout Exacerbates Angiotensin II–Induced Thoracic Aortic Aneurysm and Dissection in Mice With Abnormal Transforming Growth Factor-β-SMAD3 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(5), 1086-1101. https://doi.org/10.1161/atvbaha.117.310694
Huang, Y., Qi, Y., Du, J.-Q., & Zhang, D. (2014). MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opinion on Therapeutic Targets, 18(12), 1355-1365. https://doi.org/10.1517/14728222.2014.961424
Jiménez-Pavón, D., Artero, E. G., Lee, D., España-Romero, V., Sui, X., Pate, R. R., Church, T. S., Moreno, L. A., Lavie, C. J., & Blair, S. N. (2016). Cardiorespiratory Fitness and Risk of Sudden Cardiac Death in Men and Women in the United States. Mayo Clinic Proceedings, 91(7), 849-857. https://doi.org/10.1016/j.mayocp.2016.04.025
Junttila, M. J. (2020). Electrocardiographic Markers of Fibrosis in Cardiomyopathy: A Beginning of a Long Journey. Cardiology, 145(5), 309-310. https://doi.org/10.1159/000506507
Kang, Q., Li, X., Yang, M., Fernando, T., & Wan, Z. (2018). Galectin-3 in patients with coronary heart disease and atrial fibrillation. Clinica Chimica Acta, 478, 166-170. https://doi.org/10.1016/j.cca.2017.12.041
Karetnikova, V., Osokina, A., Gruzdeva, O., Uchasova, E., Zykov, M., Kalaeva, V., Kashtalap, V., Shafranskaya, K., Hryachkova, O., & Barbarash, O. (2016). Serum Galectin and Renal Dysfunction in ST-Segment Elevation Myocardial Infarction. Disease Markers, 2016, Article 1549063. https://doi.org/10.1155/2016/1549063
Koo, H. Y., El-Baz, L. M., House, S., Cilvik, S. N., Dorry, S. J., Shoukry, N. M., Salem, M. L., Hafez, H. S., Dulin, N. O., Ornitz, D. M., & Guzy, R. D. (2018). Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. The Journal of Pathology, 246(1), 54-66. https://doi.org/10.1002/path.5106
Kuga, K., Kusakari, Y., Uesugi, K., Semba, K., Urashima, T., Akaike, T., & Minamisawa, S. (2020). Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1. PLOS ONE, 15(4), Article e0231905. https://doi.org/10.1371/journal.pone.0231905
Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Egashira, K., & Imaizumi, T. (2002). Transforming Growth Factor-β Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats. Circulation, 106(1), 130-135. https://doi.org/10.1161/01.cir.0000020689.12472.e0
Latchamsetty, R., & Bogun, F. (2017). Premature Ventricular Complex Ablation in Structural Heart Disease. Cardiac Electrophysiology Clinics, 9(1), 133-140. https://doi.org/10.1016/j.ccep.2016.10.010
Lee, S. Y. (2018). Synergistic effect of maclurin on ginsenoside compound K induced inhibition of the transcriptional expression of matrix metalloproteinase-1 in HaCaT human keratinocyte cells. Journal of Ginseng Research, 42(2), 229-232. https://doi.org/10.1016/j.jgr.2017.11.003
Liu, T., Song, D., Dong, J., Zhu, P., Liu, J., Liu, W., Ma, X., Zhao, L., & Ling, S. (2017). Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure. Frontiers in Pharmacology, 8, Article 238. https://doi.org/10.3389/fphys.2017.00238
Liu, X., Sun, L., Chen, J., Jin, Y., Liu, Q., Xia, Z., Wang, L., & Li, J. (2017). Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction. PLOS ONE, 12(7), Article e0181322. https://doi.org/10.1371/journal.pone.0181322
Lubrano, V., & Balzan, S. (2019). Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Molecular and Cellular Biochemistry, 464(1-2), 143-152. https://doi.org/10.1007/s11010-019-03656-y
Ma, Y., Zou, H., Zhu, X.-X., Pang, J., Xu, Q., Jin, Q.-Y., Ding, Y.-H., Zhou, B., & Huang, D.-S. (2017). Transforming growth factor β: A potential biomarker and therapeutic target of ventricular remodeling. Oncotarget, 8(32), 53780-53790. https://doi.org/10.18632/oncotarget.17255
Magnussen, C., & Blankenberg, S. (2018). Biomarkers for heart failure: small molecules with high clinical relevance. Journal of Internal Medicine, 283(6), 530-543. https://doi.org/10.1111/joim.12756
Maiolino, G., Rossitto, G., Pedon, L., Cesari, M., Frigo, A. C., Azzolini, M., Plebani, M., & Rossi, G. P. (2015). Galectin-3 Predicts Long-Term Cardiovascular Death in High-Risk Patients With Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(3), 725-732. https://doi.org/10.1161/atvbaha.114.304964
Martínez-Martínez, E., Ibarrola, J., Fernández-Celis, A., Santamaria, E., Fernández-Irigoyen, J., Rossignol, P., Jaisser, F., & López-Andrés, N. (2017). Differential Proteomics Identifies Reticulocalbin-3 as a Novel Negative Mediator of Collagen Production in Human Cardiac Fibroblasts. Scientific Reports, 7(1), Article 12192. https://doi.org/10.1038/s41598-017-12305-7
Martínez-Martínez, E., Calvier, L., Fernández-Celis, A., Rousseau, E., Jurado-López, R., Rossoni, L. V., Jaisser, F., Zannad, F., Rossignol, P., Cachofeiro, V., & López-Andrés, N. (2015). Galectin-3 Blockade Inhibits Cardiac Inflammation and Fibrosis in Experimental Hyperaldosteronism and Hypertension. Hypertension, 66(4), 767-775. https://doi.org/10.1161/hypertensionaha.115.05876
McCarthy, C. P., & Januzzi, J. L. (2018). Soluble ST2 in Heart Failure. Heart Failure Clinics, 14(1), 41-48. https://doi.org/10.1016/j.hfc.2017.08.005
Miró, Ò., González de la Presa, B., Herrero-Puente, P., Fernández Bonifacio, R., Möckel, M., Mueller, C., Casals, G., Sandalinas, S., Llorens, P., Martín-Sánchez, F. J., Jacob, J., Bedini, J. L., & Gil, V. (2017). The GALA study: relationship between galectin-3 serum levels and short- and long-term outcomes of patients with acute heart failure. Biomarkers, 22(8), 731-739. https://doi.org/10.1080/1354750X.2017.1319421
Motloch, L. J., & Akar, F. G. (2015). Gene therapy to restore electrophysiological function in heart failure. Expert Opinion on Biological Therapy, 15(6), 803-817. https://doi.org/10.1517/14712598.2015.1036734
Nagpal, V., Rai, R., Place, A. T., Murphy, S. B., Verma, S. K., Ghosh, A. K., & Vaughan, D. E. (2016). MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation, 133(3), 291-301. https://doi.org/10.1161/circulationaha.115.018174
Neefs, J., van den Berg, N. W. E., Limpens, J., Berger, W. R., Boekholdt, S. M., Sanders, P., & de Groot, J. R. (2017). Aldosterone Pathway Blockade to Prevent Atrial Fibrillation: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 231, 155-161. https://doi.org/10.1016/j.ijcard.2016.12.029
Nielsen, S. H., Mouton, A. J., DeLeon-Pennell, K. Y., Genovese, F., Karsdal, M., & Lindsey, M. L. (2019). Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biology, 75-76, 43-57. https://doi.org/10.1016/j.matbio.2017.12.001
Oikonomou, E., Vogiatzi, G., Tsalamandris, S., Mourouzis, K., Siasos, G., Lazaros, G., Skotsimara, G., Marinos, G., Vavuranakis, M., & Tousoulis, D. (2018). Non-natriuretic peptide biomarkers in heart failure with preserved and reduced ejection fraction. Biomarkers in Medicine, 12(7), 783-797. https://doi.org/10.2217/bmm-2017-0376
Okyere, A. D., & Tilley, D. G. (2020). Leukocyte-Dependent Regulation of Cardiac Fibrosis. Frontiers in Physiology, 11, Article 301. https://doi.org/10.3389/fphys.2020.00301
Oyenuga, A., Folsom, A. R., Fashanu, O., Aguilar, D., & Ballantyne, C. M. (2018). Plasma Galectin-3 and Sonographic Measures of Carotid Atherosclerosis in the Atherosclerosis Risk in Communities Study. Angiology, 70(1), 47-55. https://doi.org/10.1177/0003319718780772
Oz, F., Onur, I., Elitok, A., Ademoglu, E., Altun, I., Bilge, A. K., & Adalet, K. (2017). Galectin-3 correlates with arrhythmogenic right ventricular cardiomyopathy and predicts the risk of ventricular arrhythmias in patients with implantable defibrillators. Acta Cardiologica, 72(4), 453-459. https://doi.org/10.1080/00015385.2017.1335371
Paar, V., Jirak, P., Larbig, R., Zagidullin, N. S., Brandt, M. C., Lichtenauer, M., Hoppe, U. C., & Motloch, L. J. (2019). Pathophysiology of Calcium Mediated Ventricular Arrhythmias and Novel Therapeutic Options with Focus on Gene Therapy. International Journal of Molecular Sciences, 20(21), Article 5304. https://doi.org/10.3390/ijms20215304
Pearson, M. J., King, N., & Smart, N. A. (2018). Effect of exercise therapy on established and emerging circulating biomarkers in patients with heart failure: a systematic review and meta-analysis. Open Heart, 5(2), Article e000819. https://doi.org/10.1136/openhrt-2018-000819
Pinto, Y. M., Pinto-Sietsma, S.-J., Philipp, T., Engler, S., Koβmehl, P., Hocher, B., Marquardt, H., Sethmann, S., Lauster, R., Merker, H.-J., & Paul, M. (2000). Reduction in Left Ventricular Messenger RNA for Transforming Growth Factor β1 Attenuates Left Ventricular Fibrosis and Improves Survival Without Lowering Blood Pressure in the Hypertensive TGR(mRen2)27 Rat. Hypertension, 36(5), 747-754. https://doi.org/10.1161/01.hyp.36.5.747
Reese-Petersen, A. L., Olesen, M. S., Karsdal, M. A., Svendsen, J. H., & Genovese, F. (2020). Atrial fibrillation and cardiac fibrosis: A review on the potential of extracellular matrix proteins as biomarkers. Matrix Biology, 91-92, 188-203. https://doi.org/10.1016/j.matbio.2020.03.005
Rosenbloom, J., Macarak, E., Piera-Velazquez, S., & Jimenez, S. A. (2017). Human Fibrotic Diseases: Current Challenges in Fibrosis Research. In L. Rittié (Ed.) Fibrosis. Methods in Molecular Biology (Vol. 1627, pp. 1-23). Humana Press. https://doi.org/10.1007/978-1-4939-7113-8_1
Sang, H.-Q., Jiang, Z.-M., Zhao, Q.-P., & Xin, F. (2015). MicroRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomedicine & Pharmacotherapy, 71, 185-189. https://doi.org/10.1016/j.biopha.2015.02.030
Shomanova, Z., Ohnewein, B., Schernthaner, C., Höfer, K., Pogoda, C. A., Frommeyer, G., Wernly, B., Brandt, M. C., Dieplinger, A.-M., Reinecke, H., Hoppe, U. C., Strohmer, B., Pistulli, R., & Motloch, L. J. (2020). Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death. Journal of Clinical Medicine, 9(2), Article 578. https://doi.org/10.3390/jcm9020578
Siasos, G., Bletsa, E., Stampouloglou, P. K., Oikonomou, E., Tsigkou, V., Paschou, S. A., Vlasis, K., Marinos, G., Vavuranakis, M., Stefanadis, C., & Tousoulis, D. (2020). MicroRNAs in cardiovascular disease. Hellenic Journal of Cardiology, 61(3), 165-173. https://doi.org/10.1016/j.hjc.2020.03.003
Stewart, R., Held, C., Hadziosmanovic, N., Armstrong, P. W., Cannon, C. P., Granger, C. B., Hagström, E., Hochman, J. S., Koenig, W., Lonn, E., Nicolau, J. C., Steg, P. G., Vedin, O., Wallentin, L., White, H. D., & STABILITY Investigators. (2017). Physical Activity and Mortality in Patients With Stable Coronary Heart Disease. Journal of the American College of Cardiology, 70(14), 1689-1700. https://doi.org/10.1016/j.jacc.2017.08.017
Tang, Z., Zeng, L., Lin, Y., Han, Z., Gu, J., Wang, C., & Zhang, H. (2019). Circulating Galectin-3 is Associated With Left Atrial Appendage Remodelling and Thrombus Formation in Patients With Atrial Fibrillation. Heart, Lung and Circulation, 28(6), 923-931. https://doi.org/10.1016/j.hlc.2018.05.094
Tao, H., Chen, Z.-W., Yang, J.-J., & Shi, K.-H. (2016). MicroRNA-29a suppresses cardiac fibroblasts proliferation via targeting VEGF-A/MAPK signal pathway. International Journal of Biological Macromolecules, 88, 414-423. https://doi.org/10.1016/j.ijbiomac.2016.04.010
Tarbit, E., Singh, I., Peart, J. N., & Rose'Meyer, R. B. (2019). Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Failure Reviews, 24(1), 1-15. https://doi.org/10.1007/s10741-018-9720-1
Te, A. L., Higa, S., Chung, F. P., Lin, C. Y., Lo, M. T., Liu, C. A., Lin, C., Chang, Y. C., Chang, S. L., Lo, L. W., Hu, Y. F., Tuan, T. C., Chao, T. F., Liao, J., Chang, Y. T., Lin, C. H., Hung, Y., Yamada, S., Pan, K. L., Lin, Y. J., … Chen, S. A. (2017). The use of a novel signal analysis to identify the origin of idiopathic right ventricular outflow tract ventricular tachycardia during sinus rhythm: Simultaneous amplitude frequency electrogram transformation mapping. PLOS ONE, 12(3), Article e0173189. https://doi.org/10.1371/journal.pone.0173189
Teekakirikul, P., Zhu, W., Huang, H. C., & Fung, E. (2019). Hypertrophic Cardiomyopathy: An Overview of Genetics and Management. Biomolecules, 9(12), Article 878. https://doi.org/10.3390/biom9120878
Vermeulen, Z., Hervent, A.-S., Dugaucquier, L., Vandekerckhove, L., Rombouts, M., Beyens, M., Schrijvers, D. M., De Meyer, G. R. Y., Maudsley, S., De Keulenaer, G. W., & Segers, V. F. M. (2017). Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. American Journal of Physiology-Heart and Circulatory Physiology, 313(5), H934-H945. https://doi.org/10.1152/ajpheart.00206.2017
Viigimae, M., Karai, D., Pirn, P., Pilt, K., Meigas, K., & Kaik, J. (2015). QT Interval Variability Index and QT Interval Duration in Different Sleep Stages: Analysis of Polysomnographic Recordings in Nonapneic Male Patients. BioMed Research International, 2015, Article 963028. https://doi.org/10.1155/2015/963028
Wang, N., Zheng, X., Qian, J., Yao, W., Bai, L., Hou, G., Qiu, X., Li, X., & Jiang, X. (2017). Renal sympathetic denervation alleviates myocardial fibrosis following isoproterenol-induced heart failure. Molecular Medicine Reports, 16(4), 5091-5098. https://doi.org/10.3892/mmr.2017.7255
Wang, X., Wang, H.-X., Li, Y.-L., Zhang, C.-C., Zhou, C.-Y., Wang, L., Xia, Y.-L., Du, J., & Li, H.-H. (2015). MicroRNA Let-7i Negatively Regulates Cardiac Inflammation and Fibrosis. Hypertension, 66(4), 776-785. https://doi.org/10.1161/hypertensionaha.115.05548
Wang, Z., Stuckey, D. J., Murdoch, C. E., Camelliti, P., Lip, G. Y. H., & Griffin, M. (2018). Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor. Cell Death & Disease, 9(6), Article 613. https://doi.org/10.1038/s41419-018-0573-2
World Health Organization. (n.d.). Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
Wu, Y., Liu, Y., Pan, Y., Lu, C., Xu, H., Wang, X., Liu, T., Feng, K., & Tang, Y. (2018). MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel. Biomedicine & Pharmacotherapy, 104, 252-260. https://doi.org/10.1016/j.biopha.2018.04.157
Yalcin, M. U., Gurses, K. M., Kocyigit, D., Canpinar, H., Canpolat, U., Evranos, B., Yorgun, H., Sahiner, M. L., Kaya, E. B., Hazirolan, T., Tokgozoglu, L., Oto, M. A., Ozer, N., Guc, D., & Aytemir, K. (2015). The Association of Serum Galectin-3 Levels with Atrial Electrical and Structural Remodeling. Journal of Cardiovascular Electrophysiology, 26(6), 635-640. https://doi.org/10.1111/jce.12637
Yuan, X., Pan, J., Wen, L., Gong, B., Li, J., Gao, H., Tan, W., Liang, S., Zhang, H., & Wang, X. (2020). MiR‐590‐3p regulates proliferation, migration and collagen synthesis of cardiac fibroblast by targeting ZEB1. Journal of Cellular and Molecular Medicine, 24(1), 227-237. https://doi.org/10.1111/jcmm.14704
Yue, Y., Huang, S., Wang, L., Wu, Z., Liang, M., Li, H., Lv, L., Li, W., & Wu, Z. (2020). M2b Macrophages Regulate Cardiac Fibroblast Activation and Alleviate Cardiac Fibrosis After Reperfusion Injury. Circulation Journal, 84(4), 626-635. https://doi.org/10.1253/circj.cj-19-0959
Zhang, S., Lu, Y., & Jiang, C. (2020). Inhibition of histone demethylase JMJD1C attenuates cardiac hypertrophy and fibrosis induced by angiotensin II. Journal of Receptors and Signal Transduction, 40(4), 339-347. https://doi.org/10.1080/10799893.2020.1734819
Zhou, Y., Deng, L., Zhao, D., Chen, L., Yao, Z., Guo, X., Liu, X., Lv, L., Leng, B., Xu, W., Qiao, G., & Shan, H. (2016). MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. Journal of Cellular and Molecular Medicine, 20(3), 495-505. https://doi.org/10.1111/jcmm.12754
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)