Lactobacillus reuteri cell-free extracts against antibiotic-resistant bacteria

Authors

  • O. V. Knysh State Institution “I. I. Mechnikov Institute of Microbiology and Immunology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, https://orcid.org/0000-0002-4105-1299
  • A. V. Martynov State Institution “I. I. Mechnikov Institute of Microbiology and Immunology of the National Academy of Medical Sciences of Ukraine”, Kharkiv, https://orcid.org/0000-0003-1428-0085

DOI:

https://doi.org/10.14739/2310-1210.2020.4.208397

Keywords:

Lactobacillus reuteri derivatives, inhibitory activity, combinatorial (precursor-directed) biosynthesis

Abstract

 

The aim of the research was to evaluate the antimicrobial potential of cell-free extracts obtained in various ways from the probiotic strain Lactobacillus reuteri DSM 17938 with respect to their ability to influence the proliferation of antibiotic-resistant bacteria.

Materials and methods. Cell-free extracts were obtained: 1) from L. reuteri cell suspension, subjected to disintegration by repeated freezing-thawing, L; 2) from L. reuteri culture, cultivated in its own disintegrate (ML); 3) from L. reuteri culture, cultivated in its own disintegrate supplemented with glycerol (73.7 mg/ml) and glucose (72.1 mg/ml) (MLG); 4) from L. reuteri culture, cultivated in its own disintegrate supplemented with ascorbic acid (20 mg/ml) (MLA). Multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates: Escherichia coli, Klebsiella pneumoniae, Lelliottia amnigena and Corynebacterium xerosis were used as a test cultures. The investigation of the inhibitory activity of cell-free extracts was carried out by spectrophotometric method using a microplate analyzer “Lisa Scan EM” (“Erba Lachema s.r.o.”,CzechRepublic).

Results. Cell-free extract L exerted predominantly stimulatory effect on the proliferation of all studied test cultures. Cell-free extract ML had significant inhibitory effect on the proliferation of E. coli and C. xerosis (growth inhibition indices were 24.8 % and 96.1 %, respectively) and did not have significant effect on the proliferation of K. pneumoniae and L. amnigena. Cell-free extracts MLG and MLA caused pronounced inhibition of the proliferative activity of all tested microorganisms. Growth inhibition indices were: 75 % and 90.7 % (E. coli), 77.9 % and 88.9 % (K. pneumoniae), 40.9 % and 77.9 % (L. amnigena), 99 % and 100 % (C. xerosis), respectively.

Conclusions. The cell-free extracts obtained by cultivation of L. reuteri DSM 17938 in its own disintegrate supplemented with glycerol and glucose or ascorbic acid have shown a pronounced antimicrobial activity against antibiotic-resistant bacteria in vitro. After confirming safety and efficacy in vivo, they can be used to increase the efficiency of the therapy of diseases caused by antibiotic-resistant microorganisms. The results of the study indicate the prospects of obtaining probiotic derivatives with high antimicrobial activity by applying a combinatorial (precursor directed) biosynthesis strategy.

References

de Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLOS Medicine, 13(11), Article e1002184. https://doi.org/10.1371/journal.pmed.1002184

Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36(1), 22-32. https://doi.org/10.1002/jor.23656

World Health Organization. (2017, February 27). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/

Keith, J. W., & Pamer, E. G. (2018). Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 216(1), 10-19. https://doi.org/10.1084/jem.20180399

Rizvi, M., Rizvi, M. W., Shaheen, Sultan, A., Khan, F., Shukla, I., & Malik, A. (2013). Emergence of coryneform bacteria as pathogens in nosocomial surgical site infections in a tertiary care hospital of North India. Journal of Infection and Public Health, 6(4), 283-288. https://doi.org/10.1016/j.jiph.2013.01.005

Nayak, N., Parajuli, R., Hamal, D., Shrestha, R., Neupane, S., Bhatta, D. R., Hs, S., Gokhale, S., Sharma, B., & Baral, N. (2017). Non-diphtheriae Corynebacterium species as emerging pathogens: case series from a tertiary care hospital in western Nepal. Malaysian Journal of Medical Research, 1(1), 19-24. https://ejournal.lucp.net/index.php/mjmr/article/view/105/84

Sasikumari, O., & Thomas, S. (2018). Isolation of Corynebacterium xerosis from clinical specimens: A case series. Journal of The Academy of Clinical Microbiologists, 20(1), 43-45. https://doi.org/10.4103/jacm.jacm_68_16

Kharseeva, G. G., Voronina, N. A., Gasretova, T. D., Sylka, O. I., & Tyukavkina, S. Yu. (2017). Antibiotikorezistentnye shtammy nedifteriinykh korinebakterii [Antibiotics resistance of Corynebacterium non diphtheriae strains]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, (2), 3-8. https://doi.org/10.36233/0372-9311-2017-2-3-8 [in Russian].

Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V. A., Foster, S., Gilmore, B. F., Hancock, R. E. W., Harper, D., Henderson, I. R., Hilpert, K., Jones, B. V., Kadioglu, A., Knowles, D., Ólafsdóttir, S., Payne, D., Projan, S., Shaunak, S., … Rex, J. H. (2016). Alternatives to antibiotics – a pipeline portfolio review. The Lancet Infectious Diseases, 16(2), 239-251. https://doi.org/10.1016/s1473-3099(15)00466-1

Wong, W. F., & Santiago, M. (2017). Microbial approaches for targeting antibiotic-resistant bacteria. Microbial Biotechnology, 10(5), 1047-1053. https://doi.org/10.1111/1751-7915.12783

Singh, A., Vishwakarma, V., & Singhal, B. (2018). Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities – Metabiotics: Probiotics Effector Molecules. Advances in Bioscience and Biotechnology, 9(4), 147-189. https://doi.org/10.4236/abb.2018.94012

Manzoor, A., Ul-Haq, I., Baig, S., Qazi, J. I., & Seratlic, S. (2016). Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens. Jundishapur Journal of Microbiology, 9(1), Article e18952. https://doi.org/10.5812/jjm.18952

Fedorova, T. V., Vasina, D. V., Begunova, A. V., Rozhkova, I. V., Raskoshnaya, T. A., & Gabrielyan, N. I. (2018). Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae. Applied Biochemistry and Microbiology, 54(3), 277-287. https://doi.org/10.1134/s0003683818030043

Britton, R. A. (2017). Chapter 8 - Lactobacillus reuteri. In M. H. Floch, Y. Ringel, & W. Allan Walker (Eds.), The Microbiota in Gastrointestinal Pathophysiology (pp. 89-97). ScienceDirect; Academic Press. https://doi.org/10.1016/b978-0-12-804024-9.00008-2

Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in Human Health and Diseases. Frontiers in Microbiology, 9, Article 757. https://doi.org/10.3389/fmicb.2018.00757

Reginensi, S. M., Olivera, J. A., Bermúdez, J., & González, M. J. (2016). Lactobacillus in the Dairy Industry: From Natural Diversity to Biopreservation Resources. In S. Castro-Sowinski (Ed.), Microbial Models: From Environmental to Industrial Sustainability (Vol. 1, pp. 57-81). Springer. https://doi.org/10.1007/978-981-10-2555-6_4

Greifová, G., Májeková, H., Greif, G., Body, P., Greifová, M., & Dubničková, M. (2017). Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiologica, 62(6), 515-524. https://doi.org/10.1007/s12223-017-0524-9

Etchebehere, M. C., Piveta, C., & Levy, C. E. (2017). The influence of glycerol upon L. reuteri activity against enteropathogens. Medical Express, 4(6), Article M170606. https://doi.org/10.5935/medicalexpress.2017.06.06

Spinler, J. K., Auchtung, J., Brown, A., Boonma, P., Oezguen, N., Ross, C. L., Luna, R. A., Runge, J., Versalovic, J., Peniche, A., Dann, S. M., Britton, R. A., Haag, A., & Savidge, T. C. (2017). Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infection and Immunity, 85(10), Article e00303-17. https://doi.org/10.1128/iai.00303-17

Mathew, S., Verghese, R., & David, A. (2017). Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. Journal of Current Research in Scientific Medicine, 3(2), 88-93. https://doi.org/10.4103/jcrsm.jcrsm_35_17

Panda, L., & Arul, J. (2018, March 18-22). AGFD 187: Antibacterial Activity of Ascorbic acid: pH effect, specific action or both? Body. 255th ACS National Meeting, AGFD Symposium, New Orleans, LA. https://doi.org/10.13140/RG.2.2.22321.48482

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Knysh, O. V., Isayenko, O. Y., Voyda, Y. V., Kizimenko, O. O., & Babych, Y. M. (2019). Influence of cell-free extracts of Bifidobacterium bifidum and Lactobacillus reuteri on proliferation and biofilm formation by Escherichia coli and Pseudomonas aeruginosa. Regulatory Mechanisms in Biosystems, 10(2), 251-256. https://doi.org/10.15421/021938

Lindquist, J. A., & Mertens, P. R. (2018). Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Communication and Signaling, 16(1), Article 63. https://doi.org/10.1186/s12964-018-0274-6

Abhisingha, M., Dumnil, J., & Pitaksutheepong, C. (2017). Selection of Potential Probiotic Lactobacillus with Inhibitory Activity Against Salmonella and Fecal Coliform Bacteria. Probiotics and Antimicrobial Proteins, 10(2), 218-227. https://doi.org/10.1007/s12602-017-9304-8

Pancheniak, E. de F. R., Maziero, M. T., Rodriguez-León, J. A., Parada, J. L., Spier, M. R., & Soccol, C. R. (2012). Molecular characterisation and biomass and metabolite production of Lactobacillus reuteri LPB P01-001: a potential probiotic. Brazilian Journal of Microbiology, 43(1), 135-147. https://doi.org/10.1590/s1517-83822012000100015

Jamalifar, H., Rahimi, H., Samadi, N., Shahverdi, A., Sharifian, Z., Hosseini, F., Eslahi, H., & Fazeli, M. (2011). Antimicrobial activity of different Lactobacillus species against multi- drug resistant clinical isolates of Pseudomonas aeruginosa. Iranian journal of microbiology, 3(1), 21-25.

Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, Article 789. https://doi.org/10.3389/fmicb.2019.00789

Engels, C., Schwab, C., Zhang, J., Stevens, M. J. A., Bieri, C., Ebert, M.-O., McNeill, K., Sturla, S. J., & Lacroix, C. (2016). Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Scientific Reports, 6(1), Article 36246. https://doi.org/10.1038/srep36246

Tajkarimi, M., & Ibrahim, S. A. (2011). Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Control, 22(6), 801-804. https://doi.org/10.1016/j.foodcont.2010.11.030

Downloads

How to Cite

1.
Knysh OV, Martynov AV. Lactobacillus reuteri cell-free extracts against antibiotic-resistant bacteria. Zaporozhye Medical Journal [Internet]. 2020Jul.22 [cited 2024Nov.23];22(4). Available from: http://zmj.zsmu.edu.ua/article/view/208397

Issue

Section

Original research