Lactobacillus reuteri cell-free extracts against antibiotic-resistant bacteria
DOI:
https://doi.org/10.14739/2310-1210.2020.4.208397Keywords:
Lactobacillus reuteri derivatives, inhibitory activity, combinatorial (precursor-directed) biosynthesisAbstract
The aim of the research was to evaluate the antimicrobial potential of cell-free extracts obtained in various ways from the probiotic strain Lactobacillus reuteri DSM 17938 with respect to their ability to influence the proliferation of antibiotic-resistant bacteria.
Materials and methods. Cell-free extracts were obtained: 1) from L. reuteri cell suspension, subjected to disintegration by repeated freezing-thawing, L; 2) from L. reuteri culture, cultivated in its own disintegrate (ML); 3) from L. reuteri culture, cultivated in its own disintegrate supplemented with glycerol (73.7 mg/ml) and glucose (72.1 mg/ml) (MLG); 4) from L. reuteri culture, cultivated in its own disintegrate supplemented with ascorbic acid (20 mg/ml) (MLA). Multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates: Escherichia coli, Klebsiella pneumoniae, Lelliottia amnigena and Corynebacterium xerosis were used as a test cultures. The investigation of the inhibitory activity of cell-free extracts was carried out by spectrophotometric method using a microplate analyzer “Lisa Scan EM” (“Erba Lachema s.r.o.”,CzechRepublic).
Results. Cell-free extract L exerted predominantly stimulatory effect on the proliferation of all studied test cultures. Cell-free extract ML had significant inhibitory effect on the proliferation of E. coli and C. xerosis (growth inhibition indices were 24.8 % and 96.1 %, respectively) and did not have significant effect on the proliferation of K. pneumoniae and L. amnigena. Cell-free extracts MLG and MLA caused pronounced inhibition of the proliferative activity of all tested microorganisms. Growth inhibition indices were: 75 % and 90.7 % (E. coli), 77.9 % and 88.9 % (K. pneumoniae), 40.9 % and 77.9 % (L. amnigena), 99 % and 100 % (C. xerosis), respectively.
Conclusions. The cell-free extracts obtained by cultivation of L. reuteri DSM 17938 in its own disintegrate supplemented with glycerol and glucose or ascorbic acid have shown a pronounced antimicrobial activity against antibiotic-resistant bacteria in vitro. After confirming safety and efficacy in vivo, they can be used to increase the efficiency of the therapy of diseases caused by antibiotic-resistant microorganisms. The results of the study indicate the prospects of obtaining probiotic derivatives with high antimicrobial activity by applying a combinatorial (precursor directed) biosynthesis strategy.
References
de Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLOS Medicine, 13(11), Article e1002184. https://doi.org/10.1371/journal.pmed.1002184
Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36(1), 22-32. https://doi.org/10.1002/jor.23656
World Health Organization. (2017, February 27). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/
Keith, J. W., & Pamer, E. G. (2018). Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 216(1), 10-19. https://doi.org/10.1084/jem.20180399
Rizvi, M., Rizvi, M. W., Shaheen, Sultan, A., Khan, F., Shukla, I., & Malik, A. (2013). Emergence of coryneform bacteria as pathogens in nosocomial surgical site infections in a tertiary care hospital of North India. Journal of Infection and Public Health, 6(4), 283-288. https://doi.org/10.1016/j.jiph.2013.01.005
Nayak, N., Parajuli, R., Hamal, D., Shrestha, R., Neupane, S., Bhatta, D. R., Hs, S., Gokhale, S., Sharma, B., & Baral, N. (2017). Non-diphtheriae Corynebacterium species as emerging pathogens: case series from a tertiary care hospital in western Nepal. Malaysian Journal of Medical Research, 1(1), 19-24. https://ejournal.lucp.net/index.php/mjmr/article/view/105/84
Sasikumari, O., & Thomas, S. (2018). Isolation of Corynebacterium xerosis from clinical specimens: A case series. Journal of The Academy of Clinical Microbiologists, 20(1), 43-45. https://doi.org/10.4103/jacm.jacm_68_16
Kharseeva, G. G., Voronina, N. A., Gasretova, T. D., Sylka, O. I., & Tyukavkina, S. Yu. (2017). Antibiotikorezistentnye shtammy nedifteriinykh korinebakterii [Antibiotics resistance of Corynebacterium non diphtheriae strains]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, (2), 3-8. https://doi.org/10.36233/0372-9311-2017-2-3-8 [in Russian].
Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V. A., Foster, S., Gilmore, B. F., Hancock, R. E. W., Harper, D., Henderson, I. R., Hilpert, K., Jones, B. V., Kadioglu, A., Knowles, D., Ólafsdóttir, S., Payne, D., Projan, S., Shaunak, S., … Rex, J. H. (2016). Alternatives to antibiotics – a pipeline portfolio review. The Lancet Infectious Diseases, 16(2), 239-251. https://doi.org/10.1016/s1473-3099(15)00466-1
Wong, W. F., & Santiago, M. (2017). Microbial approaches for targeting antibiotic-resistant bacteria. Microbial Biotechnology, 10(5), 1047-1053. https://doi.org/10.1111/1751-7915.12783
Singh, A., Vishwakarma, V., & Singhal, B. (2018). Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities – Metabiotics: Probiotics Effector Molecules. Advances in Bioscience and Biotechnology, 9(4), 147-189. https://doi.org/10.4236/abb.2018.94012
Manzoor, A., Ul-Haq, I., Baig, S., Qazi, J. I., & Seratlic, S. (2016). Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens. Jundishapur Journal of Microbiology, 9(1), Article e18952. https://doi.org/10.5812/jjm.18952
Fedorova, T. V., Vasina, D. V., Begunova, A. V., Rozhkova, I. V., Raskoshnaya, T. A., & Gabrielyan, N. I. (2018). Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae. Applied Biochemistry and Microbiology, 54(3), 277-287. https://doi.org/10.1134/s0003683818030043
Britton, R. A. (2017). Chapter 8 - Lactobacillus reuteri. In M. H. Floch, Y. Ringel, & W. Allan Walker (Eds.), The Microbiota in Gastrointestinal Pathophysiology (pp. 89-97). ScienceDirect; Academic Press. https://doi.org/10.1016/b978-0-12-804024-9.00008-2
Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in Human Health and Diseases. Frontiers in Microbiology, 9, Article 757. https://doi.org/10.3389/fmicb.2018.00757
Reginensi, S. M., Olivera, J. A., Bermúdez, J., & González, M. J. (2016). Lactobacillus in the Dairy Industry: From Natural Diversity to Biopreservation Resources. In S. Castro-Sowinski (Ed.), Microbial Models: From Environmental to Industrial Sustainability (Vol. 1, pp. 57-81). Springer. https://doi.org/10.1007/978-981-10-2555-6_4
Greifová, G., Májeková, H., Greif, G., Body, P., Greifová, M., & Dubničková, M. (2017). Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiologica, 62(6), 515-524. https://doi.org/10.1007/s12223-017-0524-9
Etchebehere, M. C., Piveta, C., & Levy, C. E. (2017). The influence of glycerol upon L. reuteri activity against enteropathogens. Medical Express, 4(6), Article M170606. https://doi.org/10.5935/medicalexpress.2017.06.06
Spinler, J. K., Auchtung, J., Brown, A., Boonma, P., Oezguen, N., Ross, C. L., Luna, R. A., Runge, J., Versalovic, J., Peniche, A., Dann, S. M., Britton, R. A., Haag, A., & Savidge, T. C. (2017). Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infection and Immunity, 85(10), Article e00303-17. https://doi.org/10.1128/iai.00303-17
Mathew, S., Verghese, R., & David, A. (2017). Antimicrobial activity of Vitamin C demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. Journal of Current Research in Scientific Medicine, 3(2), 88-93. https://doi.org/10.4103/jcrsm.jcrsm_35_17
Panda, L., & Arul, J. (2018, March 18-22). AGFD 187: Antibacterial Activity of Ascorbic acid: pH effect, specific action or both? Body. 255th ACS National Meeting, AGFD Symposium, New Orleans, LA. https://doi.org/10.13140/RG.2.2.22321.48482
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Knysh, O. V., Isayenko, O. Y., Voyda, Y. V., Kizimenko, O. O., & Babych, Y. M. (2019). Influence of cell-free extracts of Bifidobacterium bifidum and Lactobacillus reuteri on proliferation and biofilm formation by Escherichia coli and Pseudomonas aeruginosa. Regulatory Mechanisms in Biosystems, 10(2), 251-256. https://doi.org/10.15421/021938
Lindquist, J. A., & Mertens, P. R. (2018). Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Communication and Signaling, 16(1), Article 63. https://doi.org/10.1186/s12964-018-0274-6
Abhisingha, M., Dumnil, J., & Pitaksutheepong, C. (2017). Selection of Potential Probiotic Lactobacillus with Inhibitory Activity Against Salmonella and Fecal Coliform Bacteria. Probiotics and Antimicrobial Proteins, 10(2), 218-227. https://doi.org/10.1007/s12602-017-9304-8
Pancheniak, E. de F. R., Maziero, M. T., Rodriguez-León, J. A., Parada, J. L., Spier, M. R., & Soccol, C. R. (2012). Molecular characterisation and biomass and metabolite production of Lactobacillus reuteri LPB P01-001: a potential probiotic. Brazilian Journal of Microbiology, 43(1), 135-147. https://doi.org/10.1590/s1517-83822012000100015
Jamalifar, H., Rahimi, H., Samadi, N., Shahverdi, A., Sharifian, Z., Hosseini, F., Eslahi, H., & Fazeli, M. (2011). Antimicrobial activity of different Lactobacillus species against multi- drug resistant clinical isolates of Pseudomonas aeruginosa. Iranian journal of microbiology, 3(1), 21-25.
Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C., Chuang, Y.-C., Lu, Y.-C., & Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in Microbiology, 10, Article 789. https://doi.org/10.3389/fmicb.2019.00789
Engels, C., Schwab, C., Zhang, J., Stevens, M. J. A., Bieri, C., Ebert, M.-O., McNeill, K., Sturla, S. J., & Lacroix, C. (2016). Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Scientific Reports, 6(1), Article 36246. https://doi.org/10.1038/srep36246
Tajkarimi, M., & Ibrahim, S. A. (2011). Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Control, 22(6), 801-804. https://doi.org/10.1016/j.foodcont.2010.11.030
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)