Gut microbiota and arterial hypertension (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2020.4.208409Keywords:
gut microbiota, hypertension, Firmicutes/Bacteroidetes, endotoxinemia, trimethylamine N-oxide, short chain fatty acids, butyrateAbstract
The aim of the work was to analyze and collate literature data on the role of the gut microbiota disorders in the pathogenesis of arterial hypertension and to determine the prospects for further research.
Results. The article presents the results of studies that indicate the significant role of various components of the gut microbiota disorders in the development of arterial hypertension in experimental animals and humans. The accumulated data allow for consideration of the gut microiota as a part of a complex system involved in the regulation of blood pressure. Studies using fecal microbiota transplantation showed that the fecal microbiome transfer from hypertensive animals or patients with arterial hypertension to normotensive animals led to an increase in blood pressure in the latter. At the same time, transplantation of microbiota from normotensive animals to hypertensive resulted in a decrease in blood pressure in recipients. It was revealed that the leading dysbiotic factors that play the most significant role in the mechanisms of arterial hypertension development are the composition of the gut microbiota, the Firmicutes/Bacteroidetes ratio, the state of the tight junction proteins in the gut epithelium, the gut epithelial permeability to lipopolysaccharides, endotoxinemia, subclinical systemic inflammation, the levels of trimethylamine N-oxide and short-chain fatty acids production, as well as the relationship between the latter and specific Olfr and GPR receptors.
Conclusions. The analyzed results of the studies indicate the involvement of gut microbiota disorders in the pathogenesis of arterial hypertension. However, the role of individual components of the gut microbiota in the mechanisms of blood pressure regulation and the development of hypertensive damage to target organs and complications remains poorly understood. Promising areas of the research are the development of informative methods for assessing the state of gut microbiota and fundamentally new approaches for reducing the risk of hypertension development and progression by the correction of occurring disorders.
References
Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., Clement, D. L., Coca, A., de Simone, G., Dominiczak, A., Kahan, T., Mahfoud, F., Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S. E., Kreutz, R., Laurent, S., Lip, G., … ESC Scientific Document Group. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European heart journal, 39(33), 3021-3104. https://doi.org/10.1093/eurheartj/ehy339
Camm, A., Lüscher, T., Maurer, G., & Serruys, P. (Eds.). (2019). The ESC textbook of cardiovascular medicine (3rd ed.). Oxford University Press/European Society of Cardiology. https://doi.org/10.1093/med/9780199566990.001.0001
Kovalenko, V. M., Lutai, M. I., Sirenko, Yu. M., & Sychov, O. S. (Eds.). (2018). Sertsevo-sudynni zakhvoriuvannia. Klasyfikatsiia, standarty diahnostyky ta likuvannia [Cardiovascular diseases. Classification, standards of diagnostic and therapeutic standards] (3rd ed.). Morion. [in Ukrainian].
Koval, S., Iushko, K., & Starchenko, T. (2018). Relations of Apelin with Cardiac Remodeling in Patients with Hypertension and Type 2 Diabetes. Folia Medica, 60(1), 117-123. https://doi.org/10.1515/folmed-2017-0066
Koval, S. M., Yushko, K. O., Snihurska, I. O., Starchenko, T. G., Pankiv, V. I., Lytvynova, O. M., & Mysnychenko, O. V. (2019). Relations of angiotensin-(1-7) with hemodynamic and cardiac structural and functional parameters in patients with hypertension and type 2 diabetes. Arterial Hypertension, 23(3), 183-189. https://doi.org/10.5603/ah.a2019.0012
Koval, S., Snihurska, I., Yushko, K., Lytvynova, O., & Berezin, A. (2019). Plasma microRNA-133а level in patients with essential arterial hypertension. Georgian medical news, (290), 52-59.
Mancia, G., Grassi, G., Tsioufis, K. P., Dominiczak, A. F., & Rosei, E. A. (Eds.). (2019). Manual of Hypertension of the European Society of Hypertension (3rd ed.). CRC Press. https://doi.org/10.1201/9780429199189
Xu, H., Wang, X., Feng, W., Liu, Q., Zhou, S., Liu, Q., & Cai, L. (2020). The gut microbiota and its interactions with cardiovascular disease. Microbial biotechnology, 13(3), 637-656. https://doi.org/10.1111/1751-7915.13524
Kazemian, N., Mahmoudi, M., Halperin, F., Wu, J. C., & Pakpour, S. (2020). Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 8(1), Article 36. https://doi.org/10.1186/s40168-020-00821-0
Tang, W. H., Kitai, T., & Hazen, S. L. (2017). Gut Microbiota in Cardiovascular Health and Disease. Circulation research, 120(7), 1183-1196. https://doi.org/10.1161/CIRCRESAHA.117.309715
Richards, E. M., Pepine, C. J., Raizada, M. K., & Kim, S. (2017). The Gut, Its Microbiome, and Hypertension. Current Hypertension Reports, 19(4), Article 36. https://doi.org/10.1007/s11906-017-0734-1
Katsimichas, T., Antonopoulos, A. S., Katsimichas, A., Ohtani, T., Sakata, Y., & Tousoulis, D. (2019). The intestinal microbiota and cardiovascular disease. Cardiovascular Research, 115(10), 1471-1486. https://doi.org/10.1093/cvr/cvz135
Nikonov, E. L., & E. N., Popova. (Eds.). (2019). Mikrobiota [Microbiota]. Media Sfera. [in Russian].
Busnelli, M., Manzini, S., & Chiesa, G. (2019). The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients, 12(1), Article 79. https://doi.org/10.3390/nu12010079
Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61(1), Article 1600240. https://doi.org/10.1002/mnfr.201600240
Miro-Blanch, J., & Yanes, O. (2019). Epigenetic Regulation at the Interplay Between Gut Microbiota and Host Metabolism. Frontiers in Genetics, 10, Article 638. https://doi.org/10.3389/fgene.2019.00638
Mithieux, G. (2018). Gut Microbiota and Host Metabolism: What Relationship. Neuroendocrinology, 106(4), 352-356. https://doi.org/10.1159/000484526
Costea, P. I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M. J., Bushman, F. D., de Vos, W. M., Ehrlich, S. D., Fraser, C. M., Hattori, M., Huttenhower, C., Jeffery, I. B., Knights, D., Lewis, J. D., Ley, R. E., Ochman, H., O'Toole, P. W., Quince, C., Relman, D. A., Shanahan, F., … Bork, P. (2018). Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 3(1), 8-16. https://doi.org/10.1038/s41564-017-0072-8
Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K., Perederiy, V., Gavalko, Y., Dorofeyev, A., Romanenko, M., Tkach, S., Sineok, L., Lushchak, O., & Vaiserman, A. (2017). Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 17(1), Article 120. https://doi.org/10.1186/s12866-017-1027-1
Mushtaq, N., Hussain, S., Zhang, S., Yuan, L., Li, H., Ullah, S., Wang, Y., & Xu, J. (2019). Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. International Journal of Molecular Medicine, 44(2), 513-522. https://doi.org/10.3892/ijmm.2019.4235
Oyama, J. I., & Node, K. (2019). Gut microbiota and hypertension. Hypertension Research, 42(5), 741-743. https://doi.org/10.1038/s41440-018-0203-5
Kang, Y., & Cai, Y. (2018). Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clinics and Research in Hepatology and Gastroenterology, 42(2), 110-117. https://doi.org/10.1016/j.clinre.2017.09.006
Pevsner-Fischer, M., Blacher, E., Tatirovsky, E., Ben-Dov, I. Z., & Elinav, E. (2017). The gut microbiome and hypertension. Current Opinion in Nephrology and Hypertension, 26(1), 1-8. https://doi.org/10.1097/MNH.0000000000000293
Hsu, C. N., Hou, C. Y., Lee, C. T., Chan, J., & Tain, Y. L. (2019). The Interplay between Maternal and Post-Weaning High-Fat Diet and Gut Microbiota in the Developmental Programming of Hypertension. Nutrients, 11(9), Article 1982. https://doi.org/10.3390/nu11091982
Sun, S., Lulla, A., Sioda, M., Winglee, K., Wu, M. C., Jacobs, D. R., Jr, Shikany, J. M., Lloyd-Jones, D. M., Launer, L. J., Fodor, A. A., & Meyer, K. A. (2019). Gut Microbiota Composition and Blood Pressure. Hypertension, 73(5), 998-1006. https://doi.org/10.1161/HYPERTENSIONAHA.118.12109
Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., Zhang, W., Weldon, R., Auguste, K., Yang, L., Liu, X., Chen, L., Yang, X., Zhu, B., & Cai, J. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5(1), Article 14. https://doi.org/10.1186/s40168-016-0222-x
Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., Pepine, C. J., Raizada, M. K., & Mohamadzadeh, M. (2015). Gut dysbiosis is linked to hypertension. Hypertension, 65(6), 1331-1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
Kanbay, M., Onal, E. M., Afsar, B., Dagel, T., Yerlikaya, A., Covic, A., & Vaziri, N. D. (2018). The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. International Urology and Nephrology, 50(8), 1453-1466. https://doi.org/10.1007/s11255-018-1873-2
Silveira-Nunes, G., Durso, D. F., Jr, L., Cunha, E., Maioli, T. U., Vieira, A. T., Speziali, E., Corrêa-Oliveira, R., Martins-Filho, O. A., Teixeira-Carvalho, A., Franceschi, C., Rampelli, S., Turroni, S., Brigidi, P., & Faria, A. (2020). Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Frontiers in Pharmacology, 11, Article 258. https://doi.org/10.3389/fphar.2020.00258
Jama, H. A., Kaye, D. M., & Marques, F. Z. (2019). The gut microbiota and blood pressure in experimental models. Current Opinion in Nephrology and Hypertension, 28(2), 97-104. https://doi.org/10.1097/MNH.0000000000000476
Karbach, S. H., Schönfelder, T., Brandão, I., Wilms, E., Hörmann, N., Jäckel, S., Schüler, R., Finger, S., Knorr, M., Lagrange, J., Brandt, M., Waisman, A., Kossmann, S., Schäfer, K., Münzel, T., Reinhardt, C., & Wenzel, P. (2016). Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. Journal of the American Heart Association, 5(9), Article e003698. https://doi.org/10.1161/JAHA.116.003698
Toral, M., Robles-Vera, I., de la Visitación, N., Romero, M., Yang, T., Sánchez, M., Gómez-Guzmán, M., Jiménez, R., Raizada, M. K., & Duarte, J. (2019). Critical Role of the Interaction Gut Microbiota - Sympathetic Nervous System in the Regulation of Blood Pressure. Frontiers in Physiology, 10, Article 231. https://doi.org/10.3389/fphys.2019.00231
Santisteban, M. M., Qi, Y., Zubcevic, J., Kim, S., Yang, T., Shenoy, V., Cole-Jeffrey, C. T., Lobaton, G. O., Stewart, D. C., Rubiano, A., Simmons, C. S., Garcia-Pereira, F., Johnson, R. D., Pepine, C. J., & Raizada, M. K. (2017). Hypertension-Linked Pathophysiological Alterations in the Gut. Circulation Research, 120(2), 312-323. https://doi.org/10.1161/CIRCRESAHA.116.309006
Adnan, S., Nelson, J. W., Ajami, N. J., Venna, V. R., Petrosino, J. F., Bryan, R. M., Jr., & Durgan, D. J. (2017). Alterations in the gut microbiota can elicit hypertension in rats. Physiological Genomics, 49(2), 96-104. https://doi.org/10.1152/physiolgenomics.00081.2016
Nowiński, A., & Ufnal, M. (2018). Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition, 46, 7-12. https://doi.org/10.1016/j.nut.2017.08.001
Cho, C. E., & Caudill, M. A. (2017). Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends in Endocrinology & Metabolism, 28(2), 121-130. https://doi.org/10.1016/j.tem.2016.10.005
Tang, W. H., & Hazen, S. L. (2017). Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Translational Research, 179, 108-115. https://doi.org/10.1016/j.trsl.2016.07.007
Ge, X., Zheng, L., Zhuang, R., Yu, P., Xu, Z., Liu, G., Xi, X., Zhou, X., & Fan, H. (2020). The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose-Response Meta-analysis. Advances in Nutrition, 11(1), 66-76. https://doi.org/10.1093/advances/nmz064
Li, Z., Wu, Z., Yan, J., Liu, H., Liu, Q., Deng, Y., Ou, C., & Chen, M. (2019). Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Laboratory Investigation, 99(3), 346-357. https://doi.org/10.1038/s41374-018-0091-y
Huc, T., Drapala, A., Gawrys, M., Konop, M., Bielinska, K., Zaorska, E., Samborowska, E., Wyczalkowska-Tomasik, A., Pączek, L., Dadlez, M., & Ufnal, M. (2018). Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. American journal of Physiology-Heart and Circulatory Physiology, 315(6), H1805-H1820. https://doi.org/10.1152/ajpheart.00536.2018
Chambers, E. S., Preston, T., Frost, G., & Morrison, D. J. (2018). Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Current Nutrition Reports, 7(4), 198-206. https://doi.org/10.1007/s13668-018-0248-8
Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29-41. https://doi.org/10.1111/1462-2920.13589
Miyamoto, J., Kasubuchi, M., Nakajima, A., Irie, J., Itoh, H., & Kimura, I. (2016). The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 25(5), 379-383. https://doi.org/10.1097/MNH.0000000000000246
Chen, Y., Xu, C., Huang, R., Song, J., Li, D., & Xia, M. (2018). Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. The Journal of Nutritional Biochemistry, 56, 175-182. https://doi.org/10.1016/j.jnutbio.2018.02.011
Liu, H., Wang, J., He, T., Becker, S., Zhang, G., Li, D., & Ma, X. (2018). Butyrate: A Double-Edged Sword for Health? Advances in Nutrition, 9(1), 21-29. https://doi.org/10.1093/advances/nmx009
Wang, L., Zhu, Q., Lu, A., Liu, X., Zhang, L., Xu, C., Liu, X., Li, H., & Yang, T. (2017). Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. Journal of Hypertension, 35(9), 1899-1908. https://doi.org/10.1097/HJH.0000000000001378
Yang, T., Magee, K. L., Colon-Perez, L. M., Larkin, R., Liao, Y. S., Balazic, E., Cowart, J. R., Arocha, R., Redler, T., Febo, M., Vickroy, T., Martyniuk, C. J., Reznikov, L. R., & Zubcevic, J. (2019). Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiologica, 226(2), Article e13256. https://doi.org/10.1111/apha.13256
Gomez-Arango, L. F., Barrett, H. L., McIntyre, H. D., Callaway, L. K., Morrison, M., Dekker Nitert, M., & SPRING Trial Group. (2016). Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension, 68(4), 974-981. https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
Maßberg, D., & Hatt, H. (2018). Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose. Physiological Reviews, 98(3), 1739-1763. https://doi.org/10.1152/physrev.00013.2017
Natarajan, N., Hori, D., Flavahan, S., Steppan, J., Flavahan, N. A., Berkowitz, D. E., & Pluznick, J. L. (2016). Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiological Genomics, 48(11), 826-834. https://doi.org/10.1152/physiolgenomics.00089.2016
Natarajan, N., & Pluznick, J. L. (2016). Olfaction in the kidney: 'smelling' gut microbial metabolites. Experimental Physiology, 101(4), 478-481. https://doi.org/10.1113/EP085285
Pluznick, J. L. (2017). Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Current Hypertension Reports, 19(4), Article 25. https://doi.org/10.1007/s11906-017-0722-5
Onyszkiewicz, M., Gawrys-Kopczynska, M., Konopelski, P., Aleksandrowicz, M., Sawicka, A., Koźniewska, E., Samborowska, E., & Ufnal, M. (2019). Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflügers Archiv - European Journal of Physiology, 471(11-12), 1441-1453. https://doi.org/10.1007/s00424-019-02322-y
Di Lorenzo, F., De Castro, C., Silipo, A., & Molinaro, A. (2019). Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiology Reviews, 43(3), 257-272. https://doi.org/10.1093/femsre/fuz002
Moludi, J., Maleki, V., Jafari-Vayghyan, H., Vaghef-Mehrabany, E., & Alizadeh, M. (2020). Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Clinical and Experimental Pharmacology and Physiology, 47(6), 927-939. https://doi.org/10.1111/1440-1681.13250
Aune, D., Giovannucci, E., Boffetta, P., Fadnes, L. T., Keum, N., Norat, T., Greenwood, D. C., Riboli, E., Vatten, L. J., & Tonstad, S. (2017). Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology, 46(3), 1029-1056. https://doi.org/10.1093/ije/dyw319
Marques, F. Z., Nelson, E., Chu, P. Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J. K., Kuruppu, S., Rajapakse, N. W., El-Osta, A., Mackay, C. R., & Kaye, D. M. (2017). High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation, 135(10), 964-977. https://doi.org/10.1161/CIRCULATIONAHA.116.024545
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)