Influence of pulmonary neuroendocrine cells on lung homeostasis

Authors

  • S. S. Popko Zaporizhzhia State Medical University, Ukraine, https://orcid.org/0000-0002-5533-4556
  • V. M. Yevtushenko Zaporizhzhia State Medical University, Ukraine,
  • V. K. Syrtsov Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2020.4.208411

Keywords:

, neuroendocrine cells, airways, allergic inflammation, innate lymphoid cells, stem cells, calcitonin gene-related peptide, γ-aminobutyric acid

Abstract

 

Pulmonary neuroendocrine cells (PNECs) – a unique cell population identified at all levels in the epithelium of the respiratory tract, histophysiology of which is still poorly understood. Given its important role as one of the main regulators of the respiration processes and homeostasis, its studying is one of the urgent tasks of medicine.

According to the International Terms for Human Cytology and Histology published by the Federative International Committee on Anatomical Terminology (FICAT) under the writing of Wolters Kluwer and Lippincott Williams & Wilkins (2008), these cells are called respiratory neuroendocrine cells (in the trachea) or respiratory endocrine cells (in the bronchial tree). However, these cells have documented in modern international scientific literature as pulmonary neuroendocrine cells.

The aim of this work is to analyze the modern scientific literature data on the effect of PNECs on the lung homeostasis in normal and pathological conditions.

PNECs and their clusters – neuroepithelial bodies act as factors that regulate lung growth and maturation in embryogenesis via secretion of serotonin and gastrin-releasing hormone. In postnatal ontogenesis, PNEC secretion products – amines and neuropeptides, are characterized by participation in various physiological and pathological processes in the lung. PNECs normally maintain neurohumoral control over vascular and airway smooth muscle tone, act as peripheral chemoreceptors, and also are responsible for regulation of cell proliferation, differentiation, and mucus production from the respiratory epithelium. In case of respiratory tract damage, PNECs are capable of transdifferentiation by activating the Notch signaling pathway and renewal of other cellular types of respiratory epithelium. PNECs have a neuroimmunomodulating effect by means of neuropeptides and neurotransmitters secretion, which maintain and enhance the airways inflammatory response to an allergen. After the allergen exposition, PNECs activate type 2 innate lymphoid cells (ILC2) which being modulated by the neuropeptide CGRP produce type 2 cytokines IL-5 and IL-13, thereby contributing to an allergic response in the airways. At the same time, secreted by the PNECs neurotransmitter γ-aminobutyric acid (GABA) interacts with IL-13 to activate goblet cell mucus secretion. ILC2 induce eosinophilic inflammation and airways hypersensitivity. Recent studies have shown that ILC2 cells also stimulate Th2-associated immune response. Thus, CGRP and GABA are the key products of PNEC, which stimulate the Th2-associated immune response in the lung.

Conclusions. Pulmonary neuroendocrine cells together with immune cells form a neuroimmunological module for the reception and response to environmental chemoattractants. The data on the role of pulmonary neuroendocrine cells in the airways allergic inflammation are still controversial in the literature, which necessitates further study of this issue.

References

Garg, A., Sui, P., Verheyden, J. M., Young, L. R., & Sun, X. (2019). Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. Current topics in developmental biology, 132, 67-89. https://doi.org/10.1016/bs.ctdb.2018.12.002

Kuo, C. S., & Krasnow, M. A. (2015). Formation of a Neurosensory Organ by Epithelial Cell Slithering. Cell, 163(2), 394-405. https://doi.org/10.1016/j.cell.2015.09.021

Noguchi, M., Sumiyama, K., & Morimoto, M. (2015). Directed Migration of Pulmonary Neuroendocrine Cells toward Airway Branches Organizes the Stereotypic Location of Neuroepithelial Bodies. Cell Reports, 13(12), 2679-2686. https://doi.org/10.1016/j.celrep.2015.11.058

Hockman, D., Burns, A. J., Schlosser, G., Gates, K. P., Jevans, B., Mongera, A., Fisher, S., Unlu, G., Knapik, E. W., Kaufman, C. K., Mosimann, C., Zon, L. I., Lancman, J. J., Dong, P., Lickert, H., Tucker, A. S., & Baker, C. V. (2017). Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. ELife, 6, Article e21231. https://doi.org/10.7554/elife.21231

Tata, P. R., & Rajagopal, J. (2017). Plasticity in the lung: making and breaking cell identity. Development, 144(5), 755-766. https://doi.org/10.1242/dev.143784

de Jong, P. R., Takahashi, N., Peiris, M., Bertin, S., Lee, J., Gareau, M. G., Paniagua, A., Harris, A. R., Herdman, D. S., Corr, M., Blackshaw, L. A., & Raz, E. (2015). TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal immunology, 8(3), 491-504. https://doi.org/10.1038/mi.2014.82

Gu, X., Karp, P. H., Brody, S. L., Pierce, R. A., Welsh, M. J., Holtzman, M. J., & Ben-Shahar, Y. (2014). Chemosensory Functions for Pulmonary Neuroendocrine Cells. American Journal of Respiratory Cell and Molecular Biology, 50(3), 637-646. https://doi.org/10.1165/rcmb.2013-0199oc

Kobayashi, Y., & Tata, P. R. (2018). Pulmonary Neuroendocrine Cells: Sensors and Sentinels of the Lung. Developmental Cell, 45(4), 425-426. https://doi.org/10.1016/j.devcel.2018.05.009

Klein Wolterink, R., Pirzgalska, R. M., & Veiga-Fernandes, H. (2018). Neuroendocrine Cells Take Your Breath Away. Immunity, 49(1), 9-11. https://doi.org/10.1016/j.immuni.2018.06.010

van den Brink, S. C., Sage, F., Vértesy, Á., Spanjaard, B., Peterson-Maduro, J., Baron, C. S., Robin, C., & van Oudenaarden, A. (2017). Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nature Methods, 14(10), 935-936. https://doi.org/10.1038/nmeth.4437

Yao, E., Lin, C., Wu, Q., Zhang, K., Song, H., & Chuang, P.-T. (2017). Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury. Stem Cells, 36(3), 377-391. https://doi.org/10.1002/stem.2744

Ouadah, Y., Rojas, E. R., Riordan, D. P., Capostagno, S., Kuo, C. S., & Krasnow, M. A. (2019). Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell, 179(2), 403-416.e23. https://doi.org/10.1016/j.cell.2019.09.010

Meder, L., König, K., Ozretić, L., Schultheis, A. M., Ueckeroth, F., Ade, C. P., Albus, K., Boehm, D., Rommerscheidt-Fuss, U., Florin, A., Buhl, T., Hartmann, W., Wolf, J., Merkelbach-Bruse, S., Eilers, M., Perner, S., Heukamp, L. C., & Buettner, R. (2015). NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. International Journal of Cancer, 138(4), 927-938. https://doi.org/10.1002/ijc.29835

Lafkas, D., Shelton, A., Chiu, C., de Leon Boenig, G., Chen, Y., Stawicki, S. S., Siltanen, C., Reichelt, M., Zhou, M., Wu, X., Eastham-Anderson, J., Moore, H., Roose-Girma, M., Chinn, Y., Hang, J. Q., Warming, S., Egen, J., Lee, W. P., Austin, C., … Siebel, C. W. (2015). Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 528(7580), 127-131. https://doi.org/10.1038/nature15715

Tumanskyi, V. O., & Kovalenko, I. S. (2019). Rakovye stvolovye i mezenkhimal'nye stvolovye kletki v protokovoi adenokartsinome podzheludochnoi zhelezy [Cancer stem cells and mesenchymal stem cells in pancreatic ductal adenocarcinoma]. Pathologia, 16(1), 131-138. https://doi.org/10.14739/2310-1237.2019.1.166476 [in Russian].

Branchfield, K., Nantie, L., Verheyden, J. M., Sui, P., Wienhold, M. D., & Sun, X. (2016). Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science, 351(6274), 707-710. https://doi.org/10.1126/science.aad7969

Baudarbekova, M. M. (2019). Immunohistochemical study of neoangiogenesis markers in squamous cell lung cancer. Pathologia, 16(2), 164-169. https://doi.org/10.14739/2310-1237.2019.2.177090

Veiga-Fernandes, H., & Artis, D. (2018). Neuronal-immune system cross-talk in homeostasis. Science, 359(6383), 1465-1466. https://doi.org/10.1126/science.aap9598

Sui, P., Wiesner, D. L., Xu, J., Zhang, Y., Lee, J., Van Dyken, S., Lashua, A., Yu, C., Klein, B. S., Locksley, R. M., Deutsch, G., & Sun, X. (2018). Pulmonary neuroendocrine cells amplify allergic asthma responses. Science, 360(6393), Article eaan8546. https://doi.org/10.1126/science.aan8546

Klose, C. S., & Artis, D. (2016). Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nature Immunology, 17(7), 765-774. https://doi.org/10.1038/ni.3489

Klose, C., Mahlakõiv, T., Moeller, J. B., Rankin, L. C., Flamar, A. L., Kabata, H., Monticelli, L. A., Moriyama, S., Putzel, G. G., Rakhilin, N., Shen, X., Kostenis, E., König, G. M., Senda, T., Carpenter, D., Farber, D. L., & Artis, D. (2017). The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature, 549(7671), 282-286. https://doi.org/10.1038/nature23676

Wallrapp, A., Riesenfeld, S. J., Burkett, P. R., Abdulnour, R. E., Nyman, J., Dionne, D., Hofree, M., Cuoco, M. S., Rodman, C., Farouq, D., Haas, B. J., Tickle, T. L., Trombetta, J. J., Baral, P., Klose, C., Mahlakõiv, T., Artis, D., Rozenblatt-Rosen, O., Chiu, I. M., Levy, B. D., … Kuchroo, V. K. (2017). The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature, 549(7672), 351-356. https://doi.org/10.1038/nature24029

Li, S., Koziol-White, C., Jude, J., Jiang, M., Zhao, H., Cao, G., Yoo, E., Jester, W., Morley, M. P., Zhou, S., Wang, Y., Lu, M. M., Panettieri, R. A., Jr, & Morrisey, E. E. (2016). Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness. The Journal of clinical investigation, 126(5), 1978-1982. https://doi.org/10.1172/JCI81389

Löser, S., & Maizels, R. M. (2018). Immunology: The Neuronal Pathway to Mucosal Immunity. Current Biology, 28(1), R33-R36. https://doi.org/10.1016/j.cub.2017.11.025

Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y., Trinkaus‐Randall, V. E., & Ai, X. (2017). Early life allergen‐induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. The FASEB Journal, 31(9), 4117-4128. https://doi.org/10.1096/fj.201700115r

Barrios, J., Kho, A. T., Aven, L., Mitchel, J. A., Park, J.-A., Randell, S. H., Miller, L. A., Tantisira, K. G., & Ai, X. (2019). Pulmonary Neuroendocrine Cells Secrete γ-Aminobutyric Acid to Induce Goblet Cell Hyperplasia in Primate Models. American Journal of Respiratory Cell and Molecular Biology, 60(6), 687-694. https://doi.org/10.1165/rcmb.2018-0179oc

Huang, Y., Guo, L., Qiu, J., Chen, X., Hu-Li, J., Siebenlist, U., Williamson, P. R., Urban, J. F., Jr, & Paul, W. E. (2015). IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nature immunology, 16(2), 161-169. https://doi.org/10.1038/ni.3078

Molofsky, A. B., Savage, A. K., & Locksley, R. M. (2015). Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 42(6), 1005-1019. https://doi.org/10.1016/j.immuni.2015.06.006

Mason, B. N., Kaiser, E. A., Kuburas, A., Loomis, M. M., Latham, J. A., Garcia-Martinez, L. F., & Russo, A. F. (2016). Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms. Journal of Neuroscience, 37(1), 204-216. https://doi.org/10.1523/jneurosci.2967-16.2016

Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M., Fukunaga, K., Asano, K., Betsuyaku, T., & Koyasu, S. (2015). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nature Immunology, 17(1), 76-86. https://doi.org/10.1038/ni.3309

Vázquez, Y., González, L., Noguera, L., González, P. A., Riedel, C. A., Bertrand, P., & Bueno, S. M. (2019). Cytokines in the Respiratory Airway as Biomarkers of Severity and Prognosis for Respiratory Syncytial Virus Infection: An Update. Frontiers in immunology, 10, Article 1154. https://doi.org/10.3389/fimmu.2019.01154

Mitchel, J. A., Antoniak, S., Lee, J.-H., Kim, S.-H., McGill, M., Kasahara, D. I., Randell, S. H., Israel, E., Shore, S. A., Mackman, N., & Park, J.-A. (2016). IL-13 Augments Compressive Stress–Induced Tissue Factor Expression in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 54(4), 524-531. https://doi.org/10.1165/rcmb.2015-0252oc

Lambrecht, B. N., & Hammad, H. (2015). The immunology of asthma. Nature Immunology, 16(1), 45-56. https://doi.org/10.1038/ni.3049

Schuster, N. M., & Rapoport, A. M. (2017). Calcitonin Gene-Related Peptide-Targeted Therapies for Migraine and Cluster Headache: A Review. Clinical neuropharmacology, 40(4), 169-174. https://doi.org/10.1097/WNF.0000000000000227

Liao, C.-F., Chen, C.-C., Lu, Y.-W., Yao, C.-H., Lin, J.-H., Way, T.-D., Yang, T.-Y., & Chen, Y.-S. (2019). Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. Journal of Biological Engineering, 13, Article 86. https://doi.org/10.1186/s13036-019-0216-x

Hrebniak, M. P., & Fedorchenko, R. A. (2019). Influence of industrial atmospheric pollution on the development of pathology of respiratory organs. Pathologia, 16(1), 81-86. https://doi.org/10.14739/2310-1237.2019.1.166314

Popko, S. S., Evtushenko, V. M., & Syrtsov, V. K. (2019). Neiroendokrynna systema lehen: suchasnyi stan ta perspektyvy podalshykh doslidzhen (ohliad literatury) [Lung neuroendocrine system: current state and prospects for further research (review of literature)]. Bukovynskyi medychnyi visnyk, 23(3), 131-137. https://doi.org/10.24061/2413-0737.XXIV.3.91.2019.73 [in Ukrainian].

Downloads

How to Cite

1.
Popko SS, Yevtushenko VM, Syrtsov VK. Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye medical journal [Internet]. 2020Jul.22 [cited 2024Apr.16];22(4). Available from: http://zmj.zsmu.edu.ua/article/view/208411

Issue

Section

Review