Features of cardiac remodeling depending on the mode of training session

Authors

DOI:

https://doi.org/10.14739/2310-1210.2020.5.214735

Keywords:

cardiac remodeling, physical education and training

Abstract

 

Different types of physiological adaptation of the heart in athletes are formed depending on the specifics of sports activities. In cyclic, mostly aerobic training athletes (long-distance running, skiing, swimming), left ventricular (LV) dilation with a proportional increase in its wall thickness are mainly developed. Athletes participating in sports with mostly static or isometric component (weightlifters, wrestlers, throwers) develop concentric hypertrophy with increased LV wall thickness without changes in the cavity size. However, changes in the heart geometry in athletes are not limited to eccentric or concentric LV hypertrophy.

The aim of this work was to study the features of athletes’ heart remodeling depending on the mode of training session (endurance, speed, strength).

Material and methods. After the signing of the informed consent, 104 athletes (84 men and 20 women) were involved in the study: 63 – athletes who mainly trained endurance performance, 31 – strength athletes, 10 – speed athletes. The mean age of the athletes was 21.75 ± 3.32 years. Among them, there were Masters of Sports of International Class (MSIC) – 2 athletes, Masters of Sports (MS) – 25, Candidates Master of Sports (CMS) – 48, First-Class athletes – 29. All the athletes underwent M – and B-mode echocardiographic examination, Doppler interrogation of transvalvular flows and tissue Doppler imaging.

Results. In the endurance athletes, unlike the strength athletes, the diameter of the left atrium (P = 0.019) and the right ventricle (P = 0.004) as well as left ventricular myocardial mass index (LVMMI) (P = 0.004) prevailed, all other indicators showed no differences. In the endurance athletes, unlike the speed athletes, interventricular septal thickness (IVST) (P = 0.015), LVMMI (P = 0.003), left ventricle ejection fraction (LV EF) (P = 0.035) and pressure gradient in the aorta (P = 0.024) prevailed. In the strength athletes, unlike the speed athletes, left ventricular end-diastolic diameter was 10.8 % (P = 0.004) larger. The largest left atrial diameter was detected in the endurance athletes, the smallest one – in the strength athletes (P = 0.019).

Conclusions. Despite long-term exercise, normal left ventricular geometry remained in 90 % (9/10) of the speed athletes, in 74.2 % (23/31) of the strength athletes, in 46.0 % (29/63) of the endurance athletes (P = 0.012). Left ventricular hypertrophy most commonly occurred in the endurance athletes, unlike the strength athletes (47.6 % vs. 25.8 %, P = 0.044). Eccentric hypertrophy significantly prevailed over concentric type in the structure of hypertrophy in both the endurance athletes (34.9 % vs. 12.7 %, P = 0.045, respectively) and strength athletes (22.6 % vs. 3.2 %, P = 0.023, respectively).

References

Ageev, F. T., & Ovchinnikov, A. G. (2002). Diastolicheskaya disfunktsiya kak proyavlenie remodelirovaniya serdtsa [Diastolic dysfunction as the manifestation of cardiac remodeling]. Zhurnal serdechnaya nedostatochnost', 3(4), 190-195. [in Russian].

Gavrilova, E. A., & Zagorodnyi, G. M. (2019). Remodelirovanie serdtsa sportsmena v zavisimosti ot napravlennosti trenirovochnogo protsessa [Remodeling of an athlete's heart, depending on the orientation of the training process]. Prikladnaya sportivnaya nauka, (1), 48-57. [in Russian].

Kalyuzhin, V. V., Teplyakov, A. T., Solovtsov, M. A., Kalyuzhina, E. V., Bespalova, I. D., & Terentyeva, N. N. (2016). Remodelirovanie levogo zheludochka: odin ili neskol'ko stsenariev? [Remodeling of the left ventricle: one or several scenarios?] Byulleten' sibirskoi meditsiny, 15(4), 120-139. https://doi.org/10.20538/1682-0363-2016-4-120-139 [in Russian].

Komar, E. B., Morozov, V. N., & Kalinkin, L. A. (2017). Osobennosti adaptatsii serdtsa legkoatletov vysokoi kvalifikatsii k nagruzkam razlichnoi napravlennosti [The adaptation of high qualification athletes heart to different directions loads]. Vestnik sportivnoi nauki, (3), 32-35. [in Russian].

Naumenko, E. P., Shilova, V. A., Semenyago, E. F., & Korzheva, S. N. (2014). Vozmozhnosti sovremennoi tkanevoi dopplerografii v diagnostike narushenii strukturno – funktsional'nogo sostoyaniya miokarda u patsientov s ishemicheskoi bolezn'yu serdtsa i sakharnym diabetom 2 tipa [Possibilities of contemporary tissue doppler imaging in the diagnosis of structural and functional disorders of the myocardium in patients with coronary heart disease and type 2 diabetes mellitus]. GU «RNPTs RMiECh». [in Russian].

Smolensky, A. V., Mikhailova, A. V., & Tatarinova, A. Yu. (2017). Arterial'naya gipertoniya u sportsmenov i remodelirovanie sportivnogo serdtsa [Arterial hypertension and heart remodeling in athletes]. Mezhdunarodnyi zhurnal serdtsa i sosudistykh zabolevanii, 5(14), 36-45. [in Russian].

Smolensky, A. V. (2018). Remodelirovanie sportivnogo serdtsa u sportsmenov s arterial'noi gipertoniei [Athletic heart remodeling in athletes with arterial hypertension]. Fiziologiya cheloveka, 44(1), 30-38. https://doi.org/10.7868/S0131164618010046 [in Russian].

Ronzhina, O. A., & Fomina, N. V. (2012). Remodelirovanie serdtsa i fizicheskaya rabotosposobnost' sportsmenov [Cardiac remodeling and athlets efficiency]. Meditsina v Kuzbasse, 11(2), 14-17. [in Russian].

Sharykin, A. S., Badtieva, V. A., Trunina, I. I., & Osmanov, I. M. (2019). Fibroz miokarda – novyi komponent remodelirovaniya serdtsa u sportsmenov? [Myocardial fibrosis – a new component of heart remodeling in athletes?]. Kardiovaskulyarnaya terapiya i profilaktika, 18(6), 126-135. https://doi.org/10.15829/1728-8800-2019-6-126-135 [in Russian].

Cacciapuoti, F. (2011). Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)-possible therapeutic perspectives. Journal of the American Society of Hypertension, 5(6), 449-455. https://doi.org/10.1016/j.jash.2011.08.006

Camici, P. G., Olivotto, I., & Rimoldi, O. E. (2012). The coronary circulation and blood flow in left ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 52(4), 857-864. https://doi.org/10.1016/j.yjmcc.2011.08.028

Carbone, A., & D’Andrea, A. (2017). Cardiac dysfunction and athlete’s heart: new insights into pathophysiology and treatment. E-Journal of Cardiology Practice, 14(36), 23-27.

Cocker, M. S., Strohm, O., Smith, D. J., Butler, C., Belenkie, I., Meeuwisse, W., & Friedrich, M. G. (2008). Abstract 4194: Increased Incidence of Myocardial Fibrosis with Reduced Cardiac Function in Elite High-Endurance Athletes: A Cardiovascular Magnetic Resonance (CMR) Study. Circulation, 118(Suppl. 18), Article S_840.

Eijsvogels, T., Oxborough, D. L., O'Hanlon, R., Sharma, S., Prasad, S., Whyte, G., George, K. P., & Wilson, M. G. (2017). Global and regional cardiac function in lifelong endurance athletes with and without myocardial fibrosis. European Journal of Sport Science, 17(10), 1297-1303. https://doi.org/10.1080/17461391.2017.1373864

Elliott, A. D., Mahajan, R., Linz, D., Stokes, M., Verdicchio, C. V., Middeldorp, M. E., La Gerche, A., Lau, D. H., & Sanders, P. (2018). Atrial remodeling and ectopic burden in recreational athletes: Implications for risk of atrial fibrillation. Clinical Cardiology, 41(6), 843-848. https://doi.org/10.1002/clc.22967

Emery, M. S., & Kovacs, R. J. (2018). Sudden Cardiac Death in Athletes. JACC: Heart Failure, 6(1), 30-40. https://doi.org/10.1016/j.jchf.2017.07.014

Frey, N., Katus, H. A., Olson, E. N., & Hill, J. A. (2004). Hypertrophy of the heart: a new therapeutic target? Circulation, 109(13), 1580-1589. https://doi.org/10.1161/01.CIR.0000120390.68287.BB

La Gerche, A., Burns, A. T., Mooney, D. J., Inder, W. J., Taylor, A. J., Bogaert, J., Macisaac, A. I., Heidbüchel, H., & Prior, D. L. (2012). Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. European Heart Journal, 33(8), 998-1006. https://doi.org/10.1093/eurheartj/ehr397

Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., Foster, E., Goldstein, S. A., Kuznetsova, T., Lancellotti, P., Muraru, D., Picard, M. H., Rietzschel, E. R., Rudski, L., Spencer, K. T., Tsang, W., & Voigt, J. U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 16(3), 233-271. https://doi.org/10.1093/ehjci/jev014

Lazzeroni, D., Rimoldi, O., & Camici, P. G. (2016). From Left Ventricular Hypertrophy to Dysfunction and Failure. Circulation Journal, 80(3), 555-564. https://doi.org/10.1253/circj.CJ-16-0062

Limongelli, G., Rea, A., Masarone, D., Francalanci, M. P., Anastasakis, A., Calabro', R., Giovanna, R. M., Bossone, E., Elliott, P. M., & Pacileo, G. (2015). Right ventricular cardiomyopathies: a multidisciplinary approach to diagnosis. Echocardiography, 32(Suppl. 1), S75-S94. https://doi.org/10.1111/echo.12399

Lippi, G., Cervellin, G., Banfi, G., & Plebani, M. (2011). Cardiac troponins and physical exercise. It's time to make a point. Biochemia Medica, 21(1), 55-62. https://doi.org/10.11613/bm.2011.012

Lovic, D., Erdine, S., & Catakoğlu, A. B. (2014). How to estimate left ventricular hypertrophy in hypertensive patients. Anadolu Kardiyoloji Dergisi, 14(4), 389-395. https://doi.org/10.5152/akd.2014.5115

Nagueh, S. F., Smiseth, O. A., Appleton, C. P., Byrd, B. F., 3rd, Dokainish, H., Edvardsen, T., Flachskampf, F. A., Gillebert, T. C., Klein, A. L., Lancellotti, P., Marino, P., Oh, J. K., Popescu, B. A., & Waggoner, A. D. (2016). Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 29(4), 277-314. https://doi.org/10.1016/j.echo.2016.01.011

Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J., Coats, A., Falk, V., González-Juanatey, J. R., Harjola, V. P., Jankowska, E. A., Jessup, M., Linde, C., Nihoyannopoulos, P., Parissis, J. T., Pieske, B., Riley, J. P., Rosano, G., Ruilope, L. M., Ruschitzka, F., Rutten, F. H., … ESC Scientific Document Group. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal, 37(27), 2129-2200. https://doi.org/10.1093/eurheartj/ehw128

Richardson, A. J., Leckie, T., Watkins, E. R., Fitzpatrick, D., Galloway, R., Grimaldi, R., & Baker, P. (2018). Post marathon cardiac troponin T is associated with relative exercise intensity. Journal of Science and Medicine in Sport, 21(9), 880-884. https://doi.org/10.1016/j.jsams.2018.02.005

Trivax, J. E., & McCullough, P. A. (2012). Phidippides Cardiomyopathy: A Review and Case Illustration. Clinical cardiology, 35(2), 69-73. https://doi.org/10.1002/clc.20994

Wilson, M. G., Drezner, J. A., & Sharma, S. (Eds.). (2016). IOC Manual of Sports Cardiology. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119046899

Żebrowska, A., Waśkiewicz, Z., Nikolaidis, P. T., Mikołajczyk, R., Kawecki, D., Rosemann, T., & Knechtle, B. (2019). Acute Responses of Novel Cardiac Biomarkers to a 24-h Ultra-Marathon. Journal of Clinical Medicine, 8(1), Article 57. https://doi.org/10.3390/jcm8010057

Downloads

How to Cite

1.
Malakhova SM, Syvolap VV, Potapenko MS. Features of cardiac remodeling depending on the mode of training session. Zaporozhye Medical Journal [Internet]. 2020Oct.20 [cited 2024Nov.24];22(5). Available from: http://zmj.zsmu.edu.ua/article/view/214735

Issue

Section

Original research