Assessment of the nervous system state in low birth weight children taking into account the FADS2 rs174583 (C/T) gene polymorphism

Authors

  • T. Yе. Shumna Zaporizhzhia State Medical University, Ukraine,
  • T. O. Levchuk-Vorontsova Zaporizhzhia State Medical University, Ukraine,

DOI:

https://doi.org/10.14739/2310-1210.2020.5.214737

Keywords:

alleles, genotypes, polyunsaturated fatty acids, preterm birth, children

Abstract

 

Aim. To assess the neurological status and index of neuropsychological development in low birth weight children taking into account the FADS2 rs174583 (C/T) gene polymorphism.

Materials and methods. To study the FADS2 rs174583 (C/T) gene polymorphism, 170 children were examined. The children were divided into 3 groups depending on their birth weight: group I included 53 children (birth weight was 1500–1999 g, gestation period – 33.0 [32.0; 35.0] weeks), group II included 77 children (birth weight – 2000–2499 g, gestation period – 35.0 [34.0; 36.0] weeks), group III was composed of 40 children as a control (birth weight – more than 2500 g, gestation period – 38.0 [36.0; 39.0] weeks). The genotyping was carried out using a polymerase chain reaction method.

Results. The C allele and the С/Т genotype frequencies of the FADS2 rs174583 gene polymorphism in the children matched those in North-Western Europe. Seizures in the past medical history due to the nervous system disorders were most commonly occurred in children with the TT genotype (16.45 %, P < 0.05), while patients with the CC genotype had seizures in only 5.6 % of cases. Children with a birth weight of 1500–1999 g carrying the C/T heterozygous genotype and the T/T homozygous genotype of the FADS2 (rs1745683) gene polymorphism had a lower total Apgar score than children with a birth weight of more than 2000 g (P < 0.05). The coefficient of psychomotor development was the lowest in children with birth weight of 1500-1999 g and the minor homozygous T/T genotype of the FADS2 (rs1745683) gene polymorphism, at 83.0 (75.0; 83.0), which corresponded to a weak normal level of the neuropsychiatric development, while the highest index of psychomotor development (116.0 (112.0; 141.0)) and a normal high level of neuropsychiatric development were significantly registered in children with birth weight of 2500 g and the major homozygous C/C genotype.

Conclusions. It is possible that the predominance of the homozygous C/C genotype and the heterozygous C/T genotype fulfils a protective function in order to reduce the negative effects of preterm birth on the nervous system.

References

Liu, L., Oza, S., Hogan, D., Chu, Y., Perin, J., Zhu, J., Lawn, J. E., Cousens, S., Mathers, C., & Black, R. E. (2016). Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. The Lancet, 388(10063), 3027-3035. https://doi.org/10.1016/s0140-6736(16)31593-8

Kvashnina, L., & Matvienko, I. (2018). Peredchasni polohy: epidemiolohiia ta prychyn [Previous pologs: epidemiology and causes]. Slovo o zdorov'e, (1), 36-41. [in Ukrainian].

Dyak, K. V., & Yuzko, O. M. (2017). Prychynni faktory peredchasnykh polohiv (novyi pohliad na problemu) [Causative factors of premature birth (a new look at the problem)]. Neonatolohiia, khirurhiia ta perynatalna medytsyna, 7(1), 62-68. https://doi.org/10.24061/2413-4260.vii.1.23.2017.11 [in Ukrainian].

World Health Organization. (2018, February 19). Preterm birth. https://www.who.int/news-room/fact-sheets/detail/preterm-birth

Howson, C. P., Kinney, M. V., Lawn, J. E., & World Health Organization. (2012). Born Too Soon: The Global action report on preterm Birth. WHO Press. https://apps.who.int/iris/bitstream/handle/10665/44864/9789241503433_eng.pdf?sequence=1

Gomez-Sanchez, C. I., Riveiro-Alvarez, R., Soto-Insuga, V., Rodrigo, M., Tirado-Requero, P., Mahillo-Fernandez, I., Abad-Santos, F., Carballo, J. J., Dal-Ré, R., & Ayuso, C. (2015). Attention deficit hyperactivity disorder: genetic association study in a cohort of Spanish children. Behavioral and Brain Functions, 12(1), Article 2. https://doi.org/10.1186/s12993-015-0084-6

Malinowska, M. A., Wiśniewski, O. W., & Warchoł, M. (2017). Single nucleotide polymorphisms in desaturases genes – effect on docosahexaenoic acid levels in maternal and fetal tissues and early development of the child. Journal of Medical Science, 86(2), 177-185. https://doi.org/10.20883/jms.2016.237

Nettleton, J. A., & Salem, Jr. N. (2019). International Society for the Study of Fatty Acids and Lipids 2018 Symposium: Arachidonic and Docosahexaenoic Acids in Infant Development. Annals of Nutrition & Metabolism, 74(1), 83-91. https://doi.org/10.1159/000495906

Watson, C. L., Harrison, M. E., Hennes, J. E., & Harris, M. M. (2016). «Revealing The Space Between»: Creating an Observation Scale to Understand Infant Mental Health Reflective Supervision. ZERO TO THREE, 37(2), 14-21. https://eric.ed.gov/?id=EJ1123774

Heberden, C., & Maximin, E. (2017). Epigenetic Effects of N-3 Polyunsaturated Fatty Acids. In V. Patel, V. Preedy (Eds.), Handbook of Nutrition, Diet, and Epigenetics (pp. 1-15). Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_45-1

Bar, S., Milanaik, R., & Adesman, A. (2016). Long-term neurodevelopmental benefits of breastfeeding. Current Opinion in Pediatrics, 28(4), 559-566. https://doi.org/10.1097/MOP.0000000000000389

Agostoni, C., Mazzocchi, A., Leone, L., Ciappolino, V., Delvecchio, G., Altamura, C. A., & Brambilla, P. (2017). The first model of keeping energy balance and optimal psycho affective development: Breastfed infants. Journal of Affective Disorders, 224, 10-15. https://doi.org/10.1016/j.jad.2017.01.001

Lauritzen, L., Brambilla, P., Mazzocchi, A., Harsløf, L. B., Ciappolino, V., & Agostoni, C. (2016). DHA Effects in Brain Development and Function. Nutrients, 8(1), Article 6. https://doi.org/10.3390/nu8010006

Garg, P., Pejaver, R. K., Sukhija, M., & Ahuja, A. (2017). Role of DHA, ARA, & phospholipids in brain development: An Indian perspective. Clinical Epidemiology and Global Health, 5(4), 155-162. https://doi.org/10.1016/j.cegh.2017.09.003

Carlson, S. E., & Colombo, J. (2016). Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Advances in Pediatrics, 63(1), 453-471. https://doi.org/10.1016/j.yapd.2016.04.011

Wang, S., Chen, J., Jiang, D., Zhang, Q., You, C., Tocher, D. R., Monroig, Ó., Dong, Y., & Li, Y. (2018). Hnf4α is involved in the regulation of vertebrate LC-PUFA biosynthesis: insights into the regulatory role of Hnf4α on expression of liver fatty acyl desaturases in the marine teleost Siganus canaliculatus. Fish Physiology and Biochemistry, 44(3), 805-815. https://doi.org/10.1007/s10695-018-0470-8

Smith, S. L., & Rouse, C. A. (2017). Docosahexaenoic acid and the preterm infant. Maternal Health, Neonatology and Perinatology, 3, Article 22. https://doi.org/10.1186/s40748-017-0061-1

Meldrum, S. J., Li, Y., Zhang, G., Heaton, A., D'Vaz, N., Manz, J., Reischl, E., Koletzko, B. V., Prescott, S. L., & Simmer, K. (2018). Can polymorphisms in the fatty acid desaturase (FADS) gene cluster alter the effects of fish oil supplementation on plasma and erythrocyte fatty acid profiles? An exploratory study. European Journal of Nutrition, 57(7), 2583-2594. https://doi.org/10.1007/s00394-017-1529-5

Lee, S., Lee, J., Choi, I. J., Kim, Y. W., Ryu, K. W., Kim, Y. I., & Kim, J. (2018). Dietary n-3 and n-6 polyunsaturated fatty acids, the FADS gene, and the risk of gastric cancer in a Korean population. Scientific Reports, 8(1), Article 3823. https://doi.org/10.1038/s41598-018-21960-3

Peters, B. D., Voineskos, A. N., Szeszko, P. R., Lett, T. A., DeRosse, P., Guha, S., Karlsgodt, K. H., Ikuta, T., Felsky, D., John, M., Rotenberg, D. J., Kennedy, J. L., Lencz, T., & Malhotra, A. K. (2014). Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids. The Journal of Neuroscience, 34(18), 6367-6376. https://doi.org/10.1523/JNEUROSCI.2818-13.2014

Makarova, S. G., & Vishnyova, Ye. А. (2015). Sovremennye predstavleniya o vliyanii dlinnotsepochechnykh polinenasyshchennykh zhirnykh kislot na razvitie nervnoi sistemy u detei [Modern Views on the Impact of Long-Chain Polyunsaturated Fatty Acids on the Development of the Child’s Nervous System]. Voprosy sovremennoi pediatrii, 14(1), 55-63. [in Russian].

He, Z., Zhang, R., Jiang, F., Zhang, H., Zhao, A., Xu, B., Jin, L., Wang, T., Jia, W., Jia, W., & Hu, C. (2018). FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clinical Epigenetics, 10(1), Article 113. https://doi.org/10.1186/s13148-018-0545-5

Reynolds, L. M., Howard, T. D., Ruczinski, I., Kanchan, K., Seeds, M. C., Mathias, R. A., & Chilton, F. H. (2018). Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression. PLOS ONE, 13(3), Article e0194610. https://doi.org/10.1371/journal.pone.0194610

Sosa-Castillo, E., Rodríguez-Cruz, M., & Moltó-Puigmartí, C. (2017). Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk. The British Journal of Nutrition, 118(3), 161-168. https://doi.org/10.1017/S0007114517001854

AbuMweis, S. S., Panchal, S. K., & Jones, P. (2018). Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids, 53(9), 897-908. https://doi.org/10.1002/lipd.12096

de la Garza Puentes, A., Montes Goyanes, R., Chisaguano Tonato, A. M., Torres-Espínola, F. J., Arias García, M., de Almeida, L., Bonilla Aguirre, M., Guerendiain, M., Castellote Bargalló, A. I., Segura Moreno, M., García-Valdés, L., Campoy, C., Lopez-Sabater, M. C., & PREOBE team. (2017). Association of maternal weight with FADS and ELOVL genetic variants and fatty acid levels- The PREOBE follow-up. PLOS ONE, 12(6), Article e0179135. https://doi.org/10.1371/journal.pone.0179135

Barman, M., Nilsson, S., Torinsson Naluai, Å., Sandin, A., Wold, A. E., & Sandberg, A. S. (2015). Single Nucleotide Polymorphisms in the FADS Gene Cluster but not the ELOVL2 Gene are Associated with Serum Polyunsaturated Fatty Acid Composition and Development of Allergy (in a Swedish Birth Cohort). Nutrients, 7(12), 10100-10115. https://doi.org/10.3390/nu7125521

Gonzalez-Casanova, I., Rzehak, P., Stein, A. D., Garcia Feregrino, R., Rivera Dommarco, J. A., Barraza-Villarreal, A., Demmelmair, H., Romieu, I., Villalpando, S., Martorell, R., Koletzko, B., & Ramakrishnan, U. (2016). Maternal single nucleotide polymorphisms in the fatty acid desaturase 1 and 2 coding regions modify the impact of prenatal supplementation with DHA on birth weight. The American Journal of Clinical Nutrition, 103(4), 1171-1178. https://doi.org/10.3945/ajcn.115.121244

Yeates, A. J., Love, T. M., Engström, K., Mulhern, M. S., McSorley, E. M., Grzesik, K., Alhamdow, A., Wahlberg, K., Thurston, S. W., Davidson, P. W., van Wijngaarden, E., Watson, G. E., Shamlaye, C. F., Myers, G. J., Strain, J. J., & Broberg, K. (2015). Genetic variation in FADS genes is associated with maternal long-chain PUFA status but not with cognitive development of infants in a high fish-eating observational study. Prostaglandins, Leukotrienes & Essential Fatty Acids, 102, 13-20. https://doi.org/10.1016/j.plefa.2015.08.004

Goldenberg, R. L., Cliver, S. P., Mulvihill, F. X., Hickey, C. A., Hoffman, H. J., Klerman, L. V., & Johnson, M. J. (1996). Medical, psychosocial, and behavioral risk factors do not explain the increased risk for low birth weight among black women. American Journal of Obstetrics & Gynecology, 175(5), 1317-1324. https://doi.org/10.1016/s0002-9378(96)70048-0

Ensembl. (n.d.). Population genetics - Homo sapiens - Ensembl genome browser 100. Ensembl.org. Retrieved June 5, 2020. http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core

Ameur, A., Enroth, S., Johansson, A., Zaboli, G., Igl, W., Johansson, A. C., Rivas, M. A., Daly, M. J., Schmitz, G., Hicks, A. A., Meitinger, T., Feuk, L., van Duijn, C., Oostra, B., Pramstaller, P. P., Rudan, I., Wright, A. F., Wilson, J. F., Campbell, H., & Gyllensten, U. (2012). Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. American Journal of Human Genetics, 90(5), 809-820. https://doi.org/10.1016/j.ajhg.2012.03.014

Martin, N. W., Benyamin, B., Hansell, N. K., Montgomery, G. W., Martin, N. G., Wright, M. J., & Bates, T. C. (2011). Cognitive function in adolescence: testing for interactions between breast-feeding and FADS2 polymorphisms. Journal of the American Academy of Child & Adolescent Psychiatry, 50(1), 55-62.e4. https://doi.org/10.1016/j.jaac.2010.10.010

Martinez, M., & Vazquez, E. (1998). MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders. Neurology, 51(1), 26-32. https://doi.org/10.1212/wnl.51.1.26

Uauy, R., & Mena, P. (2015). Long-chain polyunsaturated fatty acids supplementation in preterm infants. Current Opinion in Pediatrics, 27(2), 165-171. https://doi.org/10.1097/MOP.0000000000000203

Tam, E. W., Chau, V., Barkovich, A. J., Ferriero, D. M., Miller, S. P., Rogers, E. E., Grunau, R. E., Synnes, A. R., Xu, D., Foong, J., Brant, R., & Innis, S. M. (2016). Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatric Research, 79(5), 723-730. https://doi.org/10.1038/pr.2016.11

Plunkett, B. A. (2019). 310: Association of breastfeeding (BF) and IQ. American Journal of Obstetrics and Gynecology, 220(1), S217-S218. https://doi.org/10.1016/j.ajog.2018.11.331

Boutwell, B. B., Young, J., & Meldrum, R. C. (2018). On the positive relationship between breastfeeding & intelligence. Developmental Psychology, 54(8), 1426-1433. https://doi.org/10.1037/dev0000537

Siziba, L. P., Baumgartner, J., Rothman, M., Matsungo, T. M., Faber, M., & Smuts, C. M. (2020). Efficacy of novel small-quantity lipid-based nutrient supplements in improving long-chain polyunsaturated fatty acid status of South African infants: a randomised controlled trial. European Journal of Clinical Nutrition, 74(1), 193-202. https://doi.org/10.1038/s41430-019-0482-1

Zielinska, M. A., Hamulka, J., Grabowicz-Chądrzyńska, I., Bryś, J., & Wesolowska, A. (2019). Association between Breastmilk LC PUFA, Carotenoids and Psychomotor Development of Exclusively Breastfed Infants. International Journal of Environmental Research and Public Health, 16(7), 1144. https://doi.org/10.3390/ijerph16071144

Vasyutin, K. A. (2009). Sostoyanie zdorov'ya detei pervogo goda zhizni, nakhodyashchikhsya na razlichnykh vidakh vskarmlivaniya [Children health in the first year of life within various feeding practices]. Vyatskii meditsinskii vestnik, (1), 62. [in Russian].

Babayeva, L. A., & Gafurjanova, H. A. (2015). Otsenka nervno-psikhicheskogo razvitiya detei grudnogo vozrasta v zavisimosti ot vida vskarmlivaniya [Evaluation of neuropsychic development of infants depending on the feeding type]. Vestnik Avitsenny, (4), 104-107. [in Russian].

Nefedeva, D. L., & Bodrova, R. A. (2015). Opredelenie reabilitatsionnogo potentsiala u nedonoshennykh detei na osnove mezhdunarodnoi klassifikatsii funktsionirovaniya, ogranichenii zhiznedeyatel'nosti i zdorov'ya (MKF) [Ievaluation of rehabilitation potential of premature children on the basis of international classification of functioning, disability and health]. Vestnik vosstanovitel'noi meditsiny, (6), 2-9. [in Russian].

Ivanov, D. O., Kozlova, L. V., & Derevtsov, V. V. (2017). Nervno-psikhicheskoe razvitie u detei, imevshikh vnutriutrobnuyu zaderzhku rosta, v pervom polugodii zhizni [Neuropsychiatric development of children in the first 6 months of life born with fetus growth delay]. Pediatr, 8(1), 40-49. https://doi.org/10.17816/PED8140-49 [in Russian].

Monteith, C., Flood, K., Pinnamaneni, R., Levine, T. A., Alderdice, F. A., Unterscheider, J., McAuliffe, F. M., Dicker, P., Tully, E. C., Malone, F.D., & Foran, A. (2019). An abnormal cerebroplacental ratio (CPR) is predictive of early childhood delayed neurodevelopment in the setting of fetal growth restriction. American Journal of Obstetrics and Gynecology, 221(3), 273.e1-273.e9. https://doi.org/10.1016/j.ajog.2019.06.026

Adams-Chapman, I., Heyne, R. J., DeMauro, S. B., Duncan, A. F., Hintz, S. R., Pappas, A., Vohr, B. R., McDonald, S. A., Das, A., Newman, J. E., Higgins, R. D., & Follow-Up Study of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. (2018). Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network. Pediatrics, 141(5), Article e20173091. https://doi.org/10.1542/peds.2017-3091

Marques, R. C., Dórea, J. G., Cunha, M., Bello, T., Bernardi, J., & Malm, O. (2019). Data relating to maternal fish consumption, methylmercury exposure, and early child neurodevelopment in the traditional living of Western Amazonians. Data in brief, 25, Article 04153. https://doi.org/10.1016/j.dib.2019.104153

Downloads

How to Cite

1.
Shumna TY, Levchuk-Vorontsova TO. Assessment of the nervous system state in low birth weight children taking into account the FADS2 rs174583 (C/T) gene polymorphism. Zaporozhye Medical Journal [Internet]. 2020Oct.20 [cited 2024Nov.24];22(5). Available from: http://zmj.zsmu.edu.ua/article/view/214737

Issue

Section

Original research