DOI: https://doi.org/10.14739/2310-1210.2020.5.214749

Современные представления о нарушении сердечного ритма у больных сахарным диабетом 2 типа, перенесших имплантацию постоянного электрокардиостимулятора (обзор литературы)

M. S. Brynza, O. S. Voronenko

Аннотация


 

Цель работы – проанализировать специализированную литературу и изучить влияние сахарного диабета (СД) 2 типа на проводящую систему сердца у больных с постоянным электрокардиостимулятором.

Выводы. Сложный, многофакторный патогенез СД затрудняет изучение взаимосвязи между наличием этого метаболического заболевания и аритмией. Доказана способность гипер- и гипогликемии, колебаний уровня глюкозы в крови провоцировать развитие аритмий, в том числе фибрилляции предсердий (ФП). Изменения архитектуры сердца способствуют замедлению или ускорению электрической проводимости, прерыванию прохождения импульса. Доказано, что наличие СД 2 типа повышает рост вероятности прогрессирования сердечной недостаточности. Дальнейшие исследования смогут дать ответ о прогностическом значении влияния СД 2 типа на результаты электрокардиостимулятора после имплантации устройства, а также определить наиболее эффективные гипогликемические препараты с антиаритмическими свойствами, которые могут предупредить развитие рецидива ФП, способствовать замедлению течения сердечной недостаточности и, возможно, уменьшению уровня летальности таких больных.


Ключевые слова


сахарный диабет 2 типа; постоянная электрокардиостимуляция; фибрилляция предсердий

Полный текст:

PDF (Українська)

Литература


Bell, D., & Goncalves, E. (2019). Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes, Obesity and Metabolism, 21(2), 210-217. https://doi.org/10.1111/dom.13512

Bohne, L. J., Johnson, D., Rose, R. A., Wilton, S. B., & Gillis, A. M. (2019). The Association Between Diabetes Mellitus and Atrial Fibrillation: Clinical and Mechanistic Insights. Frontiers in Physiology, 10, Article 135. https://doi.org/10.3389/fphys.2019.00135

Tsao, H. M., Hu, W. C., Tsai, P. H., Lee, C. L., Liu, F. C., Wang, H. H., Lo, L. W., Chang, S. L., Chao, T. F., & Chen, S. A. (2016). The Abundance of Epicardial Adipose Tissue Surrounding Left Atrium Is Associated With the Occurrence of Stroke in Patients With Atrial Fibrillation. Medicine, 95(14), Article e3260. https://doi.org/10.1097/MD.0000000000003260

Homan, E. A., Reyes, M. V., Hickey, K. T., & Morrow, J. P. (2019). Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Frontiers in Physiology, 9, Article 1847. https://doi.org/10.3389/fphys.2018.01847

Meng, X., Ma, J., Kang, S. Y., Jung, H. W., & Park, Y. K. (2020). Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chinese Medicine, 15, Article 24. https://doi.org/10.1186/s13020-020-00306-0

Weidner, K., Behnes, M., Schupp, T., Rusnak, J., Reiser, L., Bollow, A., Taton, G., Reichelt, T., Ellguth, D., Engelke, N., Hoppner, J., El-Battrawy, I., Mashayekhi, K., Weiß, C., Borggrefe, M., & Akin, I. (2018). Type 2 diabetes is independently associated with all-cause mortality secondary to ventricular tachyarrhythmias. Cardiovascular Diabetology, 17(1), Article 125. https://doi.org/10.1186/s12933-018-0768-y

Mujović, N., Marinković, M., Mihajlović, M., Mujović, N., & Potpara, T. S. (2020). Risk factor modification for the primary and secondary prevention of atrial fibrillation. Part 2. Kardiologia Polska, 78(3), 192-202. https://doi.org/10.33963/KP.15240

Zakeri, R., Morgan, J. M., Phillips, P., Kitt, S., Ng, G. A., McComb, J. M., Williams, S., Wright, D. J., Gill, J. S., Seed, A., Witte, K. K., Cowie, M. R., & REM-HF Investigators. (2020). Prevalence and prognostic significance of device-detected subclinical atrial fibrillation in patients with heart failure and reduced ejection fraction. International Journal of Cardiology, 312, 64-70. https://doi.org/10.1016/j.ijcard.2020.03.008

Aune, D., Feng, T., Schlesinger, S., Janszky, I., Norat, T., & Riboli, E. (2018). Diabetes mellitus, blood glucose and the risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. Journal of Diabetes and its Complications, 32(5), 501-511. https://doi.org/10.1016/j.jdiacomp.2018.02.004

Fu, L., Deng, H., Lin, W. D., He, S. F., Liu, F. Z., Liu, Y., Zhan, X. Z., Fang, X. H., Liao, H. T., Wei, W., Liao, Z. L., Tang, L. H., Fu, Z. Y., Zheng, M. R., Wu, S. L., & Xue, Y. M. (2019). Association between elevated blood glucose level and non-valvular atrial fibrillation: a report from the Guangzhou heart study. BMC Cardiovascular Disorders, 19(1), Article 270. https://doi.org/10.1186/s12872-019-1253-6

Song, H., Hu, H., Liao, D., Wei, J., Wei, C., Liao, F., Zhou, W., Mo, Z., Jiang, S., Ruan, X., & He, Y. (2018). Left ventricular hypertrophy predicts the decline of glomerular filtration rate in patients with type 2 diabetes mellitus. International Urology and Nephrology, 50(11), 2049-2059. https://doi.org/10.1007/s11255-018-1942-6

Bilovol, O. M., Knyazkova, I. I., Al-Travneh, O. V., Bogun, M. V., & Berezin, A. E. (2020). Altered adipocytokine profile predicts early stage of left ventricular remodeling in hypertensive patients with type 2 diabetes mellitus. Diabetes & Metabolic Syndrome, 14(2), 109-116. https://doi.org/10.1016/j.dsx.2020.01.011

Liu, J. J., Shentu, L. M., Ma, N., Wang, L. Y., Zhang, G. M., Sun, Y., Wang, Y., Li, J., & Mu, Y. L. (2020). Inhibition of NF-κB and Wnt/β-catenin/GSK3β Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats. Current Medical Science, 40(1), 35-47. https://doi.org/10.1007/s11596-020-2144-x

Prenner, S. B., Pillutla, R., Yenigalla, S., Gaddam, S., Lee, J., Obeid, M. J., Ans, A. H., Jehangir, Q., Kim, J., Zamani, P., Mazurek, J. A., Akers, S. R., & Chirinos, J. A. (2020). Serum Albumin Is a Marker of Myocardial Fibrosis, Adverse Pulsatile Aortic Hemodynamics, and Prognosis in Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 9(3), Article e014716. https://doi.org/10.1161/JAHA.119.014716

Aromolaran, A. S., & Boutjdir, M. (2017). Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Frontiers in Physiology, 8, Article 431. https://doi.org/10.3389/fphys.2017.00431

Khan, S. G., & Huda, M. S. (2017). Hypoglycemia and Cardiac Arrhythmia; Mechanisms, Evidence Base a nd Current Recommendations. Current Diabetes Reviews, 13(6), 590-597. https://doi.org/10.2174/1573399812666161201155941

Hsieh, Y. C., Liao, Y. C., Li, C. H., Lin, J. C., Weng, C. J., Lin, C. C., Lo, C. P., Huang, K. C., Huang, J. L., Lin, C. H., Wang, J. S., Wu, T. J., & Sheu, W. H. (2020). Hypoglycaemic episodes increase the risk of ventricular arrhythmia and sudden cardiac arrest in patients with type 2 diabetes - A nationwide cohort study. Diabetes Metabolism Research and Reviews, 36(2), Article e3226. https://doi.org/10.1002/dmrr.3226

Yalta, T., & Yalta, K. (2018). Systemic Inflammation and Arrhythmogenesis: A Review of Mechanistic and Clinical Perspectives. Angiology, 69(4), 288-296. https://doi.org/10.1177/0003319717709380

Monnerat, G., Alarcón, M. L., Vasconcellos, L. R., Hochman-Mendez, C., Brasil, G., Bassani, R. A., Casis, O., Malan, D., Travassos, L. H., Sepúlveda, M., Burgos, J. I., Vila-Petroff, M., Dutra, F. F., Bozza, M. T., Paiva, C. N., Carvalho, A. B., Bonomo, A., Fleischmann, B. K., de Carvalho, A., & Medei, E. (2016). Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nature Communications, 7, Article 13344. https://doi.org/10.1038/ncomms13344

Tobore, I., Li, J., Kandwal, A., Yuhang, L., Nie, Z., & Wang, L. (2019). Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Medical Informatics and Decision Making, 19(Suppl. 6), Article 266. https://doi.org/10.1186/s12911-019-0959-9

Erande, S., Sarwardekar, S., & Desai, B. (2019). QT/QTc safety and efficacy evaluation of teneligliptin in Indian type 2 diabetes mellitus patients: the "thorough QT/QTc" study (Q-SET study). Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 961-967. https://doi.org/10.2147/DMSO.S202458

Vasheghani, M., Sarvghadi, F., & Beyranvand, M. R. (2019). The association between cardiac autonomic neuropathy and diabetes control. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 581-587. https://doi.org/10.2147/DMSO.S196729

Lancefield, T. F., Patel, S. K., Freeman, M., Velkoska, E., Wai, B., Srivastava, P. M., Horrigan, M., Farouque, O., & Burrell, L. M. (2016). The Receptor for Advanced Glycation End Products (RAGE) Is Associated with Persistent Atrial Fibrillation. PLOS ONE, 11(9), Article e0161715. https://doi.org/10.1371/journal.pone.0161715

Méndez-Bailón, M., Muñoz-Rivas, N., Jiménez-García, R., Hernández-Barrera, V., de Miguel-Yanes, J. M., Villalba, N. L., de Miguel Diez, J., & Lopez-de-Andrés, A. (2017). Women with atrial fibrillation and type 2 diabetes have a higher incidence of hospitalization and undergo ablation or pacemaker implantation less frequently than men. European Journal of Internal Medicine, 42, 67-73. https://doi.org/10.1016/j.ejim.2017.05.008

Sardu, C., Barbieri, M., Santamaria, M., Giordano, V., Sacra, C., Paolisso, P., Spirito, A., Marfella, R., Paolisso, G., & Rizzo, M. R. (2017). Multipolar pacing by cardiac resynchronization therapy with a defibrillators treatment in type 2 diabetes mellitus failing heart patients: impact on responders rate, and clinical outcomes. Cardiovascular Diabetology, 16(1), Article 75. https://doi.org/10.1186/s12933-017-0554-2

Ghaem, H., Ghorbani, M., & Zare Dorniani, S. (2017). Evaluation of Death among the Patients Undergoing Permanent Pacemaker Implantation: A Competing Risks Analysis. Iranian Journal of Public Health, 46(6), 820-826.

Kutyifa, V., Naqvi, S. Y., Brown, M., McNitt, S., Goldenberg, I., Klein, H., & Moss, A. J. (2018). Comparison of Long-Term Survival Benefits With Cardiac Resynchronization Therapy in Patients With Mild Heart Failure With Versus Without Diabetes Mellitus (from the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy [MADIT-CRT]). The American Journal of Cardiology, 121(12), 1567-1574. https://doi.org/10.1016/j.amjcard.2018.02.040

Jacheć, W., Tomasik, A., Polewczyk, A., & Kutarski, A. (2017). Impact of ICD lead on the system durability, predictors of long-term survival following ICD system extraction. Pacing and Clinical Electrophysiology, 40(10), 1139-1146. https://doi.org/10.1111/pace.13173

Yamaguchi, T., Miyamoto, T., Iwai, T., Yamaguchi, J., Hijikata, S., Miyazaki, R., Miwa, N., Sekigawa, M., Hara, N., Nagata, Y., Nozato, T., Yamauchi, Y., Obayashi, T., & Isobe, M. (2017). Prognosis of super-elderly healthy Japanese patients after pacemaker implantation for bradycardia. Journal of Cardiology, 70(1), 18-22. https://doi.org/10.1016/j.jjcc.2016.09.009

Sun, H., Guan, Y., Wang, L., Zhao, Y., Lv, H., Bi, X., Wang, H., Zhang, X., Liu, L., Wei, M., Song, H., & Su, G. (2015). Influence of diabetes on cardiac resynchronization therapy in heart failure patients: a meta-analysis. BMC Cardiovascular Disorders, 15, Article 25. https://doi.org/10.1186/s12872-015-0018-0

Sardu, C., Paolisso, P., Sacra, C., Santamaria, M., de Lucia, C., Ruocco, A., Mauro, C., Paolisso, G., Rizzo, M. R., Barbieri, M., & Marfella, R. (2018). Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs. conventional hypoglycemic drugs: arrhythmic burden, hospitalizations for heart failure, and CRTd responders rate. Cardiovascular Diabetology, 17(1), Article 137. https://doi.org/10.1186/s12933-018-0778-9


Ссылки

  • На текущий момент ссылки отсутствуют.


Запорожский медицинский журнал   Лицензия Creative Commons
Запорожский государственный медицинский университет