Current views on heart rhythm disturbance in patients with type 2 diabetes mellitus who underwent implantation of a permanent pacemaker (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2020.5.214749Keywords:
type 2 diabetes mellitus, permanent pacing, atrial fibrillationAbstract
Aim – to analyse specialized literature and study the effect of type 2 diabetes mellitus on the cardiac conduction system in patients with a permanent pacemaker.
Conclusions. The complex, multifactorial pathogenesis of diabetes mellitus complicates the study of the relationship between the presence of this metabolic disease and arrhythmia. It is now evident that hyper- and hypoglycemia, variations in blood glucose levels can provoke the development of arrhythmias, including atrial fibrillation (AF). Changes in the heart architecture are responsible for electrical conduction slowing or acceleration and pulse transmission interruption. It is proved that the presence of type 2 diabetes mellitus increases the likelihood of heart failure progression. Further studies would be able to give an answer regarding the prognostic value of type 2 diabetes influence on the results of cardiac pacing after a device implantation, as well as to determine the most effective hypoglycemic drugs with antiarrhythmic properties which can prevent the development of AF recurrence, help slow down the progression of heart failure and possibly reduce a mortality rate among this group of patients.
References
Bell, D., & Goncalves, E. (2019). Atrial fibrillation and type 2 diabetes: Prevalence, etiology, pathophysiology and effect of anti-diabetic therapies. Diabetes, Obesity and Metabolism, 21(2), 210-217. https://doi.org/10.1111/dom.13512
Bohne, L. J., Johnson, D., Rose, R. A., Wilton, S. B., & Gillis, A. M. (2019). The Association Between Diabetes Mellitus and Atrial Fibrillation: Clinical and Mechanistic Insights. Frontiers in Physiology, 10, Article 135. https://doi.org/10.3389/fphys.2019.00135
Tsao, H. M., Hu, W. C., Tsai, P. H., Lee, C. L., Liu, F. C., Wang, H. H., Lo, L. W., Chang, S. L., Chao, T. F., & Chen, S. A. (2016). The Abundance of Epicardial Adipose Tissue Surrounding Left Atrium Is Associated With the Occurrence of Stroke in Patients With Atrial Fibrillation. Medicine, 95(14), Article e3260. https://doi.org/10.1097/MD.0000000000003260
Homan, E. A., Reyes, M. V., Hickey, K. T., & Morrow, J. P. (2019). Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Frontiers in Physiology, 9, Article 1847. https://doi.org/10.3389/fphys.2018.01847
Meng, X., Ma, J., Kang, S. Y., Jung, H. W., & Park, Y. K. (2020). Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chinese Medicine, 15, Article 24. https://doi.org/10.1186/s13020-020-00306-0
Weidner, K., Behnes, M., Schupp, T., Rusnak, J., Reiser, L., Bollow, A., Taton, G., Reichelt, T., Ellguth, D., Engelke, N., Hoppner, J., El-Battrawy, I., Mashayekhi, K., Weiß, C., Borggrefe, M., & Akin, I. (2018). Type 2 diabetes is independently associated with all-cause mortality secondary to ventricular tachyarrhythmias. Cardiovascular Diabetology, 17(1), Article 125. https://doi.org/10.1186/s12933-018-0768-y
Mujović, N., Marinković, M., Mihajlović, M., Mujović, N., & Potpara, T. S. (2020). Risk factor modification for the primary and secondary prevention of atrial fibrillation. Part 2. Kardiologia Polska, 78(3), 192-202. https://doi.org/10.33963/KP.15240
Zakeri, R., Morgan, J. M., Phillips, P., Kitt, S., Ng, G. A., McComb, J. M., Williams, S., Wright, D. J., Gill, J. S., Seed, A., Witte, K. K., Cowie, M. R., & REM-HF Investigators. (2020). Prevalence and prognostic significance of device-detected subclinical atrial fibrillation in patients with heart failure and reduced ejection fraction. International Journal of Cardiology, 312, 64-70. https://doi.org/10.1016/j.ijcard.2020.03.008
Aune, D., Feng, T., Schlesinger, S., Janszky, I., Norat, T., & Riboli, E. (2018). Diabetes mellitus, blood glucose and the risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. Journal of Diabetes and its Complications, 32(5), 501-511. https://doi.org/10.1016/j.jdiacomp.2018.02.004
Fu, L., Deng, H., Lin, W. D., He, S. F., Liu, F. Z., Liu, Y., Zhan, X. Z., Fang, X. H., Liao, H. T., Wei, W., Liao, Z. L., Tang, L. H., Fu, Z. Y., Zheng, M. R., Wu, S. L., & Xue, Y. M. (2019). Association between elevated blood glucose level and non-valvular atrial fibrillation: a report from the Guangzhou heart study. BMC Cardiovascular Disorders, 19(1), Article 270. https://doi.org/10.1186/s12872-019-1253-6
Song, H., Hu, H., Liao, D., Wei, J., Wei, C., Liao, F., Zhou, W., Mo, Z., Jiang, S., Ruan, X., & He, Y. (2018). Left ventricular hypertrophy predicts the decline of glomerular filtration rate in patients with type 2 diabetes mellitus. International Urology and Nephrology, 50(11), 2049-2059. https://doi.org/10.1007/s11255-018-1942-6
Bilovol, O. M., Knyazkova, I. I., Al-Travneh, O. V., Bogun, M. V., & Berezin, A. E. (2020). Altered adipocytokine profile predicts early stage of left ventricular remodeling in hypertensive patients with type 2 diabetes mellitus. Diabetes & Metabolic Syndrome, 14(2), 109-116. https://doi.org/10.1016/j.dsx.2020.01.011
Liu, J. J., Shentu, L. M., Ma, N., Wang, L. Y., Zhang, G. M., Sun, Y., Wang, Y., Li, J., & Mu, Y. L. (2020). Inhibition of NF-κB and Wnt/β-catenin/GSK3β Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats. Current Medical Science, 40(1), 35-47. https://doi.org/10.1007/s11596-020-2144-x
Prenner, S. B., Pillutla, R., Yenigalla, S., Gaddam, S., Lee, J., Obeid, M. J., Ans, A. H., Jehangir, Q., Kim, J., Zamani, P., Mazurek, J. A., Akers, S. R., & Chirinos, J. A. (2020). Serum Albumin Is a Marker of Myocardial Fibrosis, Adverse Pulsatile Aortic Hemodynamics, and Prognosis in Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 9(3), Article e014716. https://doi.org/10.1161/JAHA.119.014716
Aromolaran, A. S., & Boutjdir, M. (2017). Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Frontiers in Physiology, 8, Article 431. https://doi.org/10.3389/fphys.2017.00431
Khan, S. G., & Huda, M. S. (2017). Hypoglycemia and Cardiac Arrhythmia; Mechanisms, Evidence Base a nd Current Recommendations. Current Diabetes Reviews, 13(6), 590-597. https://doi.org/10.2174/1573399812666161201155941
Hsieh, Y. C., Liao, Y. C., Li, C. H., Lin, J. C., Weng, C. J., Lin, C. C., Lo, C. P., Huang, K. C., Huang, J. L., Lin, C. H., Wang, J. S., Wu, T. J., & Sheu, W. H. (2020). Hypoglycaemic episodes increase the risk of ventricular arrhythmia and sudden cardiac arrest in patients with type 2 diabetes - A nationwide cohort study. Diabetes Metabolism Research and Reviews, 36(2), Article e3226. https://doi.org/10.1002/dmrr.3226
Yalta, T., & Yalta, K. (2018). Systemic Inflammation and Arrhythmogenesis: A Review of Mechanistic and Clinical Perspectives. Angiology, 69(4), 288-296. https://doi.org/10.1177/0003319717709380
Monnerat, G., Alarcón, M. L., Vasconcellos, L. R., Hochman-Mendez, C., Brasil, G., Bassani, R. A., Casis, O., Malan, D., Travassos, L. H., Sepúlveda, M., Burgos, J. I., Vila-Petroff, M., Dutra, F. F., Bozza, M. T., Paiva, C. N., Carvalho, A. B., Bonomo, A., Fleischmann, B. K., de Carvalho, A., & Medei, E. (2016). Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nature Communications, 7, Article 13344. https://doi.org/10.1038/ncomms13344
Tobore, I., Li, J., Kandwal, A., Yuhang, L., Nie, Z., & Wang, L. (2019). Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Medical Informatics and Decision Making, 19(Suppl. 6), Article 266. https://doi.org/10.1186/s12911-019-0959-9
Erande, S., Sarwardekar, S., & Desai, B. (2019). QT/QTc safety and efficacy evaluation of teneligliptin in Indian type 2 diabetes mellitus patients: the "thorough QT/QTc" study (Q-SET study). Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 961-967. https://doi.org/10.2147/DMSO.S202458
Vasheghani, M., Sarvghadi, F., & Beyranvand, M. R. (2019). The association between cardiac autonomic neuropathy and diabetes control. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 581-587. https://doi.org/10.2147/DMSO.S196729
Lancefield, T. F., Patel, S. K., Freeman, M., Velkoska, E., Wai, B., Srivastava, P. M., Horrigan, M., Farouque, O., & Burrell, L. M. (2016). The Receptor for Advanced Glycation End Products (RAGE) Is Associated with Persistent Atrial Fibrillation. PLOS ONE, 11(9), Article e0161715. https://doi.org/10.1371/journal.pone.0161715
Méndez-Bailón, M., Muñoz-Rivas, N., Jiménez-García, R., Hernández-Barrera, V., de Miguel-Yanes, J. M., Villalba, N. L., de Miguel Diez, J., & Lopez-de-Andrés, A. (2017). Women with atrial fibrillation and type 2 diabetes have a higher incidence of hospitalization and undergo ablation or pacemaker implantation less frequently than men. European Journal of Internal Medicine, 42, 67-73. https://doi.org/10.1016/j.ejim.2017.05.008
Sardu, C., Barbieri, M., Santamaria, M., Giordano, V., Sacra, C., Paolisso, P., Spirito, A., Marfella, R., Paolisso, G., & Rizzo, M. R. (2017). Multipolar pacing by cardiac resynchronization therapy with a defibrillators treatment in type 2 diabetes mellitus failing heart patients: impact on responders rate, and clinical outcomes. Cardiovascular Diabetology, 16(1), Article 75. https://doi.org/10.1186/s12933-017-0554-2
Ghaem, H., Ghorbani, M., & Zare Dorniani, S. (2017). Evaluation of Death among the Patients Undergoing Permanent Pacemaker Implantation: A Competing Risks Analysis. Iranian Journal of Public Health, 46(6), 820-826.
Kutyifa, V., Naqvi, S. Y., Brown, M., McNitt, S., Goldenberg, I., Klein, H., & Moss, A. J. (2018). Comparison of Long-Term Survival Benefits With Cardiac Resynchronization Therapy in Patients With Mild Heart Failure With Versus Without Diabetes Mellitus (from the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy [MADIT-CRT]). The American Journal of Cardiology, 121(12), 1567-1574. https://doi.org/10.1016/j.amjcard.2018.02.040
Jacheć, W., Tomasik, A., Polewczyk, A., & Kutarski, A. (2017). Impact of ICD lead on the system durability, predictors of long-term survival following ICD system extraction. Pacing and Clinical Electrophysiology, 40(10), 1139-1146. https://doi.org/10.1111/pace.13173
Yamaguchi, T., Miyamoto, T., Iwai, T., Yamaguchi, J., Hijikata, S., Miyazaki, R., Miwa, N., Sekigawa, M., Hara, N., Nagata, Y., Nozato, T., Yamauchi, Y., Obayashi, T., & Isobe, M. (2017). Prognosis of super-elderly healthy Japanese patients after pacemaker implantation for bradycardia. Journal of Cardiology, 70(1), 18-22. https://doi.org/10.1016/j.jjcc.2016.09.009
Sun, H., Guan, Y., Wang, L., Zhao, Y., Lv, H., Bi, X., Wang, H., Zhang, X., Liu, L., Wei, M., Song, H., & Su, G. (2015). Influence of diabetes on cardiac resynchronization therapy in heart failure patients: a meta-analysis. BMC Cardiovascular Disorders, 15, Article 25. https://doi.org/10.1186/s12872-015-0018-0
Sardu, C., Paolisso, P., Sacra, C., Santamaria, M., de Lucia, C., Ruocco, A., Mauro, C., Paolisso, G., Rizzo, M. R., Barbieri, M., & Marfella, R. (2018). Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs. conventional hypoglycemic drugs: arrhythmic burden, hospitalizations for heart failure, and CRTd responders rate. Cardiovascular Diabetology, 17(1), Article 137. https://doi.org/10.1186/s12933-018-0778-9
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)