Association of leptin receptor gene polymorphisms and meta-inflammation markers with metabolically unhealthy obesity in children

Authors

DOI:

https://doi.org/10.14739/2310-1210.2021.5.227291

Keywords:

leptin receptor gene, polymorphism, interleukin-6, meta-inflammation, obesity, children

Abstract

The aim: to study the contribution of single-nucleotide polymorphisms (SNP) of the leptin receptor (LEPR) gene and meta-inflammation markers to the formation of metabolically unhealthy obesity (MUO) in children.

Materials and methods. A total of 109 obese children aged 6–18 years were examined. Based on the recommendations of the National Heart, Lung, and Blood Institute (NHLBI), 2 observation groups were formed. The main group (n = 56) was represented by patients with MUO. The control group (n = 53) comprised children with metabolically healthy obesity (MHO). Serum levels of interleukin-1β (IL-1β) were measured using a chemiluminescent immunoassay (CLIA) method, interleukin-6, leptin, adiponectin – by enzyme-linked immunosorbent assay (ELISA) and the serum level of C-reactive protein were quantified by latex turbidimetric method (Synevo, Ukraine). The method of next-generation sequencing (NGS) (CeXGat, Germany) was used to identify LEPR SNP. Statistical methods were used: analysis of variance, Spearman’s correlation analysis and multiple discriminant analysis.

Results. In obese children aged 6 to 18 years, there was an increase in pro-inflammatory adipokines IL-6 and leptin and a decrease in anti-inflammatory adiponectin. Statistically significant changes in these indicators were more expressed in the main group: IL-6 – 7.4 ± 0.5 pg/ml (ρ = 0.65; P ≤ 0.001); adiponectin – 3.9 ± 0.8 μg/ml (ρ = -0.27; P = 0.007) among all the children examined, leptin in girls – 47.8 ± 4.4 ng/ml (ρ = -0.28; P = 0.003) compared with the results of patients in the control group: IL-6 – 4.3 ± 0.3 pg/ml, adiponectin – 7.7 ± 2.4 μg/ml, leptin in girls – 32.5 ± 4.3 ng/ml, P ≤ 0.05. The most important in the development of MUO were the following SNP of the LEPR gene: rs3790435 (CiMUO = 0.939), rs2186248 (CiMUO = 0.862), P < 0.05. A strong correlation was found between MUO and serum IL-6 level (ρ = 0.7), LEPR SNP rs3790435 (ρ = 0.7), basal hyperinsulinemia (ρ = 0.72); Р ≤ 0.001. The risk of IL-6-dependent meta-inflammation in the presence of SNP rs3790435 of the LEPR gene: OR = 17.11; 95 % CI 2.8–20.4.

Conclusions. Meta-inflammation in MUO is IL-6-dependent. Among the 10 SNPs of the LEPR gene that we identified, SNP rs3790435 of the LEPR gene has a strong association with the formation of MUO. SNP rs2186248 LEPR was described by us for the first time when it was found in 94.1 % of obese children, but it was characterized by the presence of a weak association with MUO.

Author Biographies

А. Е. Abaturov, Dnipro State Medical University, Dnipro, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Pediatrics 1 and Medical Genetics

A. O. Nikulina, Dnipro State Medical University, Ukraine

MD, PhD, Associate Professor of the Department of Pediatrics 1 and Medical Genetics

References

Lobstein, T., & Brinsden, H. (2019). Atlas of Childhood Obesity. World Obesity Federation. https://data.worldobesity.org/publications/11996-Childhood-Obesity-Atlas-Report-ART-V2.pdf

Genovesi, S., Antolini, L., Orlando, A., Gilardini, L., Bertoli, S., Giussani, M., Invitti, C., Nava, E., Battaglino, M. G., Leone, A., Valsecchi, M. G., & Parati, G. (2020). Cardiovascular Risk Factors Associated With the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Frontiers in Endocrinology, 11, Article 27. https://doi.org/10.3389/fendo.2020.00027

Magge, S. N., Goodman, E., Armstrong, S. C., COMMITTEE ON NUTRITION, SECTION ON ENDOCRINOLOGY, & SECTION ON OBESITY. (2017). The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics, 140(2), Article e20171603. https://doi.org/10.1542/peds.2017-1603

Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, & National Heart, Lung, and Blood Institute. (2011). Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics, 128(Suppl 5), S213-S256. https://doi.org/10.1542/peds.2009-2107C

Abaturov, A., & Nikulina, A. (2019). Genotype C/C 13910 of the Lactase Gene as a Risk Factor for the Formation of Insulin-Resistant Obesity in Children. Acta Medica, 62(4), 150-155. https://doi.org/10.14712/18059694.2020.4

Elkins, C., Fruh, S., Jones, L., & Bydalek, K. (2019). Clinical Practice Recommendations for Pediatric Dyslipidemia. Journal of Pediatric Health Care, 33(4), 494-504. https://doi.org/10.1016/j.pedhc.2019.02.009

Vukovic, R., Dos Santos, T. J., Ybarra, M., & Atar, M. (2019). Children With Metabolically Healthy Obesity: A Review. Frontiers in Endocrinology, 10, Article 865. https://doi.org/10.3389/fendo.2019.00865

Tsatsoulis, A., & Paschou, S. A. (2020). Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Current Obesity Reports, 9(2), 109-120. https://doi.org/10.1007/s13679-020-00375-0

Nunziata, A., Funcke, J. B., Borck, G., von Schnurbein, J., Brandt, S., Lennerz, B., Moepps, B., Gierschik, P., Fischer-Posovszky, P., & Wabitsch, M. (2018). Functional and Phenotypic Characteristics of Human Leptin Receptor Mutations. Journal of the Endocrine Society, 3(1), 27-41. https://doi.org/10.1210/js.2018-00123

Voigtmann, F., Wolf, P., Landgraf, K., Stein, R., Kratzsch, J., Schmitz, S., Abou Jamra, R., Blüher, M., Meiler, J., Beck-Sickinger, A. G., Kiess, W., & Körner, A. (2021). Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing treatment decisions in patients with morbid obesity. Metabolism, 116, Article 154438. https://doi.org/10.1016/j.metabol.2020.154438

Li, J., Yang, S., Jiao, X., Yang, Y., Sun, H., Zhang, M., Yang, Y., Qin, Y., & Wei, Y. (2019). Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung, 197(5), 577-584. https://doi.org/10.1007/s00408-019-00254-z

Rojano-Rodriguez, M. E., Beristain-Hernandez, J. L., Zavaleta-Villa, B., Maravilla, P., Romero-Valdovinos, M., & Olivo-Diaz, A. (2016). Leptin receptor gene polymorphisms and morbid obesity in Mexican patients. Hereditas, 153, Article 2. https://doi.org/10.1186/s41065-016-0006-0

Manriquez, V., Aviles, J., Salazar, L., Saavedra, N., Seron, P., Lanas, F., Fajardo, C. M., Hirata, M. H., Hirata, R., & Cerda, A. (2018). Polymorphisms in Genes Involved in the Leptin-Melanocortin Pathway are Associated with Obesity-Related Cardiometabolic Alterations in a Southern Chilean Population. Molecular Diagnosis & Therapy, 22(1), 101-113. https://doi.org/10.1007/s40291-017-0306-8

Wu, J., Zhuo, Q., Tian, Y., Piao, J., & Yang, X. (2017). [Relationship of diabetes mellitus in older Han adults in China with leptin receptor gene rs1137100 and rs1137101 polymorphrism]. Wei sheng yan jiu, 46(3), 384-388.

Almeida, S. M., Furtado, J. M., Mascarenhas, P., Ferraz, M. E., Ferreira, J. C., Monteiro, M. P., Vilanova, M., & Ferraz, F. P. (2018). Association between LEPR, FTO, MC4R, and PPARG-2 polymorphisms with obesity traits and metabolic phenotypes in school-aged children. Endocrine, 60(3), 466-478. https://doi.org/10.1007/s12020-018-1587-3

Almandil, N. B., Lodhi, R. J., Ren, H., Besag, F., Rossolatos, D., Ohlsen, R., Slomp, C., Lapetina, D. L., Plazzotta, G., Murray, M. L., Al-Sulaiman, A. A., Gringras, P., Wong, I., & Aitchison, K. J. (2018). Associations between the LEP -2548G/A Promoter and Baseline Weight and between LEPR Gln223Arg and Lys656Asn Variants and Change in BMI z Scores in Arab Children and Adolescents Treated with Risperidone. Molecular Neuropsychiatry, 4(2), 111-117. https://doi.org/10.1159/000490463

Ren, D., Xu, J. H., Bi, Y., Zhang, Z., Zhang, R., Li, Y., Hu, J., Guo, Z., Niu, W., Yang, F., Li, W., Xu, Y., He, L., Yu, T., Wu, J., Li, X., Du, J., & He, G. (2019). Association study between LEPR, MC4R polymorphisms and overweight/obesity in Chinese Han adolescents. Gene, 692, 54-59. https://doi.org/10.1016/j.gene.2018.12.073

Fairbrother, U., Kidd, E., Malagamuwa, T., & Walley, A. (2018). Genetics of Severe Obesity. Current Diabetes Reports, 18(10), Article 85. https://doi.org/10.1007/s11892-018-1053-x

Dos Santos Rocha, A., de Cássia Ribeiro-Silva, R., Nunes de Oliveira Costa, G., Alexandrina Figueiredo, C., Cunha Rodrigues, L., Maria Alvim Matos, S., Leovigildo Fiaccone, R., Oliveira, P. R., Alves-Santos, N. H., Blanton, R. E., & Lima Barreto, M. (2018). Food Consumption as a Modifier of the Association between LEPR Gene Variants and Excess Body Weight in Children and Adolescents: A Study of the SCAALA Cohort. Nutrients, 10(8), Article 1117. https://doi.org/10.3390/nu10081117

Furusawa, T., Naka, I., Yamauchi, T., Natsuhara, K., Kimura, R., Nakazawa, M., Ishida, T., Inaoka, T., Matsumura, Y., Ataka, Y., Nishida, N., Tsuchiya, N., Ohtsuka, R., & Ohashi, J. (2010). The Q223R polymorphism in LEPR is associated with obesity in Pacific Islanders. Human Genetics, 127(3), 287-294. https://doi.org/10.1007/s00439-009-0768-9

Abaturov, A., & Nikulina, A. (2021). The Role of Leptin Receptor Gene Polymorphism in the Formation of Insulin Resistance in Children. Metabolism, 116, Article 154672. https://doi.org/10.1016/j.metabol.2020.154672

WHO Multicentre Growth Reference Study Group. (2006). WHO Child Growth Standards based on length/height, weight and age. Acta Paediatrica, 95(S450), 76-85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x

American Diabetes Association. (2019). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care, 42(Suppl. 1), S13-S28. https://doi.org/10.2337/dc19-S002

Alberti, K. G., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451-463. https://doi.org/10.1111/j.1464-5491.2007.02157.x

Weihe, P., & Weihrauch-Blüher, S. (2019). Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Current Obesity Reports, 8(4), 472-479. https://doi.org/10.1007/s13679-019-00357-x

Ranasinghe, P., Jayawardena, R., Gamage, N., Pujitha Wickramasinghe, V., & Hills, A. P. (2021). The range of non-traditional anthropometric parameters to define obesity and obesity-related disease in children: a systematic review. European Journal of Clinical Nutrition, 75(2), 373-384. https://doi.org/10.1038/s41430-020-00715-2

Peplies, J., Jiménez-Pavón, D., Savva, S. C., Buck, C., Günther, K., Fraterman, A., Russo, P., Iacoviello, L., Veidebaum, T., Tornaritis, M., De Henauw, S., Mårild, S., Molnár, D., Moreno, L. A., Ahrens, W., & IDEFICS consortium. (2014). Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort. International Journal of Obesity, 38(Suppl. 2), S39-S47. https://doi.org/10.1038/ijo.2014.134

Haugaard, L. K., Baker, J. L., Perng, W., Belfort, M. B., Rifas-Shiman, S. L., Switkowski, K., Oken, E., & Gillman, M. W. (2016). Growth in Total Height and Its Components and Cardiometabolic Health in Childhood. PLOS ONE, 11(9), Article e0163564. https://doi.org/10.1371/journal.pone.0163564

ACMG Board of Directors. (2015). Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genetics in Medicine, 17(6), 505-507. https://doi.org/10.1038/gim.2015.41

Jiang, H., Lei, R., Ding, S. W., & Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics, 15, Article 182. https://doi.org/10.1186/1471-2105-15-182

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324

Mose, L. E., Wilkerson, M. D., Hayes, D. N., Perou, C. M., & Parker, J. S. (2014). ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics, 30(19), 2813-2815. https://doi.org/10.1093/bioinformatics/btu376

Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control [version 2; peer review: 4 approved]. F1000Research, 7, Article 1338. https://doi.org/10.12688/f1000research.15931.2

Wickham, H. (2009). Manipulating data. In ggplot2 (pp. 157-175). Springer. https://doi.org/10.1007/978-0- 387-98141-3_9

R-Project. (n.d.). The R Project for Statistical Computing. https://www.r-project.org/

Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research, 47(D1), D886-D894. https://doi.org/10.1093/nar/gky1016

Vigeland, M. D., Gjotterud, K. S., & Selmer, K. K. (2016). FILTUS: a desktop GUI for fast and efficient detection of disease-causing variants, including a novel autozygosity detector. Bioinformatics, 32(10), 1592-1594. https://doi.org/10.1093/bioinformatics/btw046

Hu, Z., Fu, Y., Halees, A. S., Kielbasa, S. M., & Weng, Z. (2004). SeqVISTA: a new module of integrated computational tools for studying transcriptional regulation. Nucleic Acids Research, 32(Suppl. 2), W235-W241. https://doi.org/10.1093/nar/gkh483

Liu, X., Wu, C., Li, C., & Boerwinkle, E. (2016). dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Human Mutation, 37(3), 235-241. https://doi.org/10.1002/humu.22932

Ambroszkiewicz, J., Klemarczyk, W., Gajewska, J., Chełchowska, M., Rowicka, G., Ołtarzewski, M., & Laskowska-Klita, T. (2011). Serum concentration of adipocytokines in prepubertal vegetarian and omnivorous children. Medycyna wieku rozwojowego, 15(3), 326-334.

Han, M. S., White, A., Perry, R. J., Camporez, J. P., Hidalgo, J., Shulman, G. I., & Davis, R. J. (2020). Regulation of adipose tissue inflammation by interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2751-2760. https://doi.org/10.1073/pnas.1920004117

Wueest, S., & Konrad, D. (2018). The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte, 7(3), 226-228. https://doi.org/10.1080/21623945.2018.1493901

Lehrskov, L. L., & Christensen, R. H. (2019). The role of interleukin-6 in glucose homeostasis and lipid metabolism. Seminars in Immunopathology, 41(4), 491-499. https://doi.org/10.1007/s00281-019-00747-2

Pîrsean, C., Neguț, C., Stefan-van Staden, R. I., Dinu-Pirvu, C. E., Armean, P., & Udeanu, D. I. (2019). The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity. PLOS ONE, 14(1), Article e0210288. https://doi.org/10.1371/journal.pone.0210288

Zhang, Y., Li, C., Zhang, W., Zheng, X., & Chen, X. (2020). Decreased Insulin Resistance by Myo-Inositol Is Associated with Suppressed Interleukin 6/Phospho-STAT3 Signaling in a Rat Polycystic Ovary Syndrome Model. Journal of Medicinal Food, 23(4), 375-387. https://doi.org/10.1089/jmf.2019.4580

Kimura, A., & Kishimoto, T. (2010). IL-6: regulator of Treg/Th17 balance. European Journal of Immunology, 40(7), 1830-1835. https://doi.org/10.1002/eji.201040391

El-Alameey, I. R., Fadl, N. N., Hameed, E. R., Sherif, L. S., & Ahmed, H. H. (2015). Clinical Relevance of Transforming Growth Factor-β1, Interleukin-6 and Haptoglobin for Prediction of Obesity Complications in Prepubertal Egyptian Children. Open Access Macedonian Journal of Medical Sciences, 3(1), 105-110. https://doi.org/10.3889/oamjms.2015.017

Li, J., Yang, S., Jiao, X., Yang, Y., Sun, H., Zhang, M., Yang, Y., Qin, Y., & Wei, Y. (2019). Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung, 197(5), 577-584. https://doi.org/10.1007/s00408-019-00254-z

Downloads

Published

2021-09-01

How to Cite

1.
Abaturov АЕ, Nikulina AO. Association of leptin receptor gene polymorphisms and meta-inflammation markers with metabolically unhealthy obesity in children. Zaporozhye Medical Journal [Internet]. 2021Sep.1 [cited 2024Dec.26];23(5):696-702. Available from: http://zmj.zsmu.edu.ua/article/view/227291

Issue

Section

Original research