Асоціація поліморфізмів гена лептинового рецептора, маркерів метазапалення в дітей із метаболічно нездоровим ожирінням

Автор(и)

DOI:

https://doi.org/10.14739/2310-1210.2021.5.227291

Ключові слова:

ген, лептиновий рецептор, поліморфізм, інтерлейкін-6, метазапалення, ожиріння, діти

Анотація

Мета роботи – вивчити внесок однонуклеотидних поліморфізмів гена лептинового рецептора та маркерів метазапалення в формування метаболічно нездорового ожиріння в дітей.

Матеріали та методи. Oбстежили 109 дітей віком 6–18 років з ожирінням. Згідно з рекомендаціями National Heart, Lung, and Blood Institute (NHLBI), сформували 2 групи спостереження: основна (n = 56) – пацієнти з метаболічно нездоровим ожирінням; контрольна (n = 53) – діти з метаболічно здоровим ожирінням. Рівні інтерлейкіна-1β (IL-1β) у сироватці вимірювали за допомогою методу хемілюмінесцентного імуноаналізу (CLIA), IL-6, лептин, адипонектин досліджували методом імуноферментного аналізу (ELISA), а рівень С-реактивного білка в сироватці визначали кількісно за допомогою латексного турбідиметричного методу (Synevo, Україна). Для виявлення однонуклеотидних поліморфізмів гена лептинового рецептора застосовували метод геномного секвенування нової генерації, NGS (CeXGat, ФРН). Використовували статистичні методи: варіаційний аналіз, кореляційний аналіз Спірмена та множинний дискримінантний аналіз.

Результати. У дітей віком 6–18 років з ожирінням визначили підвищення прозапальних адипокінів IL-6 і лептину, а також зниження протизапального адипонектину. Статистично значущі зміни цих показників зафіксували основній групі: IL-6 – 7,4 ± 0,5 пг/мл (ρ = 0,65; р ≤ 0,001); адипонектин – 3,9 ± 0,8 мкг/мл (ρ = -0,27; р = 0,007) в усіх обстежених; лептин у дівчат – 47,8 ± 4,4 нг/мл (ρ = -0,28; р = 0,003). Результати пацієнтів контрольної групи: IL-6 – 4,3 ± 0,3 пг/мл, адипонектин – 7,7 ± 2,4 мкг/мл, лептин у дівчат – 32,5 ± 4,3 мкг/мл, р ≤ 0,05. Найбільше значення в розвитку метаболічно нездорового ожиріння мають такі однонуклеотидні поліморфізми гена лептинового рецептора: rs3790435 (CiMUO = 0,939), rs2186248 (CiMUO = 0,862), р < 0,05. Виявили сильний кореляційний зв’язок між метаболічно нездоровим ожирінням і рівнем IL-6 (ρ = 0,7), однонуклеотидним поліморфізмом rs3790435 гена лептинового рецептора (ρ = 0,7), базальною гіперінсулінемією (ρ = 0,72), р ≤ 0,001. Ризик формування IL-6-залежного метазапалення за наявності однонуклеотидного поліморфізму rs3790435 гена лептинового рецептора – ВШ = 17,11; 95 % ДІ 2,8–20,4.

Висновки. Метазапалення при метаболічно нездоровому ожирінні має IL-6-залежний характер. Серед виявлених 10 однонуклеотидних поліморфізмів гена лептинового рецептора сильну асоціацію з формуванням метаболічно нездорового ожиріння має однонуклеотидний поліморфізм rs3790435 гена лептинового рецептора. Однонуклеотидний поліморфізм rs2186248 гена лептинового рецептора описаний уперше при виявленні у 94,1 % дітей з ожирінням, але характеризується наявністю слабкої асоціації з метаболічно нездоровим ожирінням.

Біографії авторів

О. Є. Абатуров, Дніпровський державний медичний університет, м. Дніпро, Україна

д-р мед. наук, професор, зав. каф. педіатрії 1 та медичної генетики

А. О. Нікуліна, Дніпровський державний медичний університет, м. Дніпро, Україна

канд. мед. наук, доцент каф. педіатрії 1 та медичної генетики

Посилання

Lobstein, T., & Brinsden, H. (2019). Atlas of Childhood Obesity. World Obesity Federation. https://data.worldobesity.org/publications/11996-Childhood-Obesity-Atlas-Report-ART-V2.pdf

Genovesi, S., Antolini, L., Orlando, A., Gilardini, L., Bertoli, S., Giussani, M., Invitti, C., Nava, E., Battaglino, M. G., Leone, A., Valsecchi, M. G., & Parati, G. (2020). Cardiovascular Risk Factors Associated With the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Frontiers in Endocrinology, 11, Article 27. https://doi.org/10.3389/fendo.2020.00027

Magge, S. N., Goodman, E., Armstrong, S. C., COMMITTEE ON NUTRITION, SECTION ON ENDOCRINOLOGY, & SECTION ON OBESITY. (2017). The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics, 140(2), Article e20171603. https://doi.org/10.1542/peds.2017-1603

Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, & National Heart, Lung, and Blood Institute. (2011). Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics, 128(Suppl 5), S213-S256. https://doi.org/10.1542/peds.2009-2107C

Abaturov, A., & Nikulina, A. (2019). Genotype C/C 13910 of the Lactase Gene as a Risk Factor for the Formation of Insulin-Resistant Obesity in Children. Acta Medica, 62(4), 150-155. https://doi.org/10.14712/18059694.2020.4

Elkins, C., Fruh, S., Jones, L., & Bydalek, K. (2019). Clinical Practice Recommendations for Pediatric Dyslipidemia. Journal of Pediatric Health Care, 33(4), 494-504. https://doi.org/10.1016/j.pedhc.2019.02.009

Vukovic, R., Dos Santos, T. J., Ybarra, M., & Atar, M. (2019). Children With Metabolically Healthy Obesity: A Review. Frontiers in Endocrinology, 10, Article 865. https://doi.org/10.3389/fendo.2019.00865

Tsatsoulis, A., & Paschou, S. A. (2020). Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Current Obesity Reports, 9(2), 109-120. https://doi.org/10.1007/s13679-020-00375-0

Nunziata, A., Funcke, J. B., Borck, G., von Schnurbein, J., Brandt, S., Lennerz, B., Moepps, B., Gierschik, P., Fischer-Posovszky, P., & Wabitsch, M. (2018). Functional and Phenotypic Characteristics of Human Leptin Receptor Mutations. Journal of the Endocrine Society, 3(1), 27-41. https://doi.org/10.1210/js.2018-00123

Voigtmann, F., Wolf, P., Landgraf, K., Stein, R., Kratzsch, J., Schmitz, S., Abou Jamra, R., Blüher, M., Meiler, J., Beck-Sickinger, A. G., Kiess, W., & Körner, A. (2021). Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing treatment decisions in patients with morbid obesity. Metabolism, 116, Article 154438. https://doi.org/10.1016/j.metabol.2020.154438

Li, J., Yang, S., Jiao, X., Yang, Y., Sun, H., Zhang, M., Yang, Y., Qin, Y., & Wei, Y. (2019). Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung, 197(5), 577-584. https://doi.org/10.1007/s00408-019-00254-z

Rojano-Rodriguez, M. E., Beristain-Hernandez, J. L., Zavaleta-Villa, B., Maravilla, P., Romero-Valdovinos, M., & Olivo-Diaz, A. (2016). Leptin receptor gene polymorphisms and morbid obesity in Mexican patients. Hereditas, 153, Article 2. https://doi.org/10.1186/s41065-016-0006-0

Manriquez, V., Aviles, J., Salazar, L., Saavedra, N., Seron, P., Lanas, F., Fajardo, C. M., Hirata, M. H., Hirata, R., & Cerda, A. (2018). Polymorphisms in Genes Involved in the Leptin-Melanocortin Pathway are Associated with Obesity-Related Cardiometabolic Alterations in a Southern Chilean Population. Molecular Diagnosis & Therapy, 22(1), 101-113. https://doi.org/10.1007/s40291-017-0306-8

Wu, J., Zhuo, Q., Tian, Y., Piao, J., & Yang, X. (2017). [Relationship of diabetes mellitus in older Han adults in China with leptin receptor gene rs1137100 and rs1137101 polymorphrism]. Wei sheng yan jiu, 46(3), 384-388.

Almeida, S. M., Furtado, J. M., Mascarenhas, P., Ferraz, M. E., Ferreira, J. C., Monteiro, M. P., Vilanova, M., & Ferraz, F. P. (2018). Association between LEPR, FTO, MC4R, and PPARG-2 polymorphisms with obesity traits and metabolic phenotypes in school-aged children. Endocrine, 60(3), 466-478. https://doi.org/10.1007/s12020-018-1587-3

Almandil, N. B., Lodhi, R. J., Ren, H., Besag, F., Rossolatos, D., Ohlsen, R., Slomp, C., Lapetina, D. L., Plazzotta, G., Murray, M. L., Al-Sulaiman, A. A., Gringras, P., Wong, I., & Aitchison, K. J. (2018). Associations between the LEP -2548G/A Promoter and Baseline Weight and between LEPR Gln223Arg and Lys656Asn Variants and Change in BMI z Scores in Arab Children and Adolescents Treated with Risperidone. Molecular Neuropsychiatry, 4(2), 111-117. https://doi.org/10.1159/000490463

Ren, D., Xu, J. H., Bi, Y., Zhang, Z., Zhang, R., Li, Y., Hu, J., Guo, Z., Niu, W., Yang, F., Li, W., Xu, Y., He, L., Yu, T., Wu, J., Li, X., Du, J., & He, G. (2019). Association study between LEPR, MC4R polymorphisms and overweight/obesity in Chinese Han adolescents. Gene, 692, 54-59. https://doi.org/10.1016/j.gene.2018.12.073

Fairbrother, U., Kidd, E., Malagamuwa, T., & Walley, A. (2018). Genetics of Severe Obesity. Current Diabetes Reports, 18(10), Article 85. https://doi.org/10.1007/s11892-018-1053-x

Dos Santos Rocha, A., de Cássia Ribeiro-Silva, R., Nunes de Oliveira Costa, G., Alexandrina Figueiredo, C., Cunha Rodrigues, L., Maria Alvim Matos, S., Leovigildo Fiaccone, R., Oliveira, P. R., Alves-Santos, N. H., Blanton, R. E., & Lima Barreto, M. (2018). Food Consumption as a Modifier of the Association between LEPR Gene Variants and Excess Body Weight in Children and Adolescents: A Study of the SCAALA Cohort. Nutrients, 10(8), Article 1117. https://doi.org/10.3390/nu10081117

Furusawa, T., Naka, I., Yamauchi, T., Natsuhara, K., Kimura, R., Nakazawa, M., Ishida, T., Inaoka, T., Matsumura, Y., Ataka, Y., Nishida, N., Tsuchiya, N., Ohtsuka, R., & Ohashi, J. (2010). The Q223R polymorphism in LEPR is associated with obesity in Pacific Islanders. Human Genetics, 127(3), 287-294. https://doi.org/10.1007/s00439-009-0768-9

Abaturov, A., & Nikulina, A. (2021). The Role of Leptin Receptor Gene Polymorphism in the Formation of Insulin Resistance in Children. Metabolism, 116, Article 154672. https://doi.org/10.1016/j.metabol.2020.154672

WHO Multicentre Growth Reference Study Group. (2006). WHO Child Growth Standards based on length/height, weight and age. Acta Paediatrica, 95(S450), 76-85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x

American Diabetes Association. (2019). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care, 42(Suppl. 1), S13-S28. https://doi.org/10.2337/dc19-S002

Alberti, K. G., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451-463. https://doi.org/10.1111/j.1464-5491.2007.02157.x

Weihe, P., & Weihrauch-Blüher, S. (2019). Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Current Obesity Reports, 8(4), 472-479. https://doi.org/10.1007/s13679-019-00357-x

Ranasinghe, P., Jayawardena, R., Gamage, N., Pujitha Wickramasinghe, V., & Hills, A. P. (2021). The range of non-traditional anthropometric parameters to define obesity and obesity-related disease in children: a systematic review. European Journal of Clinical Nutrition, 75(2), 373-384. https://doi.org/10.1038/s41430-020-00715-2

Peplies, J., Jiménez-Pavón, D., Savva, S. C., Buck, C., Günther, K., Fraterman, A., Russo, P., Iacoviello, L., Veidebaum, T., Tornaritis, M., De Henauw, S., Mårild, S., Molnár, D., Moreno, L. A., Ahrens, W., & IDEFICS consortium. (2014). Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort. International Journal of Obesity, 38(Suppl. 2), S39-S47. https://doi.org/10.1038/ijo.2014.134

Haugaard, L. K., Baker, J. L., Perng, W., Belfort, M. B., Rifas-Shiman, S. L., Switkowski, K., Oken, E., & Gillman, M. W. (2016). Growth in Total Height and Its Components and Cardiometabolic Health in Childhood. PLOS ONE, 11(9), Article e0163564. https://doi.org/10.1371/journal.pone.0163564

ACMG Board of Directors. (2015). Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genetics in Medicine, 17(6), 505-507. https://doi.org/10.1038/gim.2015.41

Jiang, H., Lei, R., Ding, S. W., & Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics, 15, Article 182. https://doi.org/10.1186/1471-2105-15-182

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324

Mose, L. E., Wilkerson, M. D., Hayes, D. N., Perou, C. M., & Parker, J. S. (2014). ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics, 30(19), 2813-2815. https://doi.org/10.1093/bioinformatics/btu376

Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control [version 2; peer review: 4 approved]. F1000Research, 7, Article 1338. https://doi.org/10.12688/f1000research.15931.2

Wickham, H. (2009). Manipulating data. In ggplot2 (pp. 157-175). Springer. https://doi.org/10.1007/978-0- 387-98141-3_9

R-Project. (n.d.). The R Project for Statistical Computing. https://www.r-project.org/

Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research, 47(D1), D886-D894. https://doi.org/10.1093/nar/gky1016

Vigeland, M. D., Gjotterud, K. S., & Selmer, K. K. (2016). FILTUS: a desktop GUI for fast and efficient detection of disease-causing variants, including a novel autozygosity detector. Bioinformatics, 32(10), 1592-1594. https://doi.org/10.1093/bioinformatics/btw046

Hu, Z., Fu, Y., Halees, A. S., Kielbasa, S. M., & Weng, Z. (2004). SeqVISTA: a new module of integrated computational tools for studying transcriptional regulation. Nucleic Acids Research, 32(Suppl. 2), W235-W241. https://doi.org/10.1093/nar/gkh483

Liu, X., Wu, C., Li, C., & Boerwinkle, E. (2016). dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Human Mutation, 37(3), 235-241. https://doi.org/10.1002/humu.22932

Ambroszkiewicz, J., Klemarczyk, W., Gajewska, J., Chełchowska, M., Rowicka, G., Ołtarzewski, M., & Laskowska-Klita, T. (2011). Serum concentration of adipocytokines in prepubertal vegetarian and omnivorous children. Medycyna wieku rozwojowego, 15(3), 326-334.

Han, M. S., White, A., Perry, R. J., Camporez, J. P., Hidalgo, J., Shulman, G. I., & Davis, R. J. (2020). Regulation of adipose tissue inflammation by interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2751-2760. https://doi.org/10.1073/pnas.1920004117

Wueest, S., & Konrad, D. (2018). The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte, 7(3), 226-228. https://doi.org/10.1080/21623945.2018.1493901

Lehrskov, L. L., & Christensen, R. H. (2019). The role of interleukin-6 in glucose homeostasis and lipid metabolism. Seminars in Immunopathology, 41(4), 491-499. https://doi.org/10.1007/s00281-019-00747-2

Pîrsean, C., Neguț, C., Stefan-van Staden, R. I., Dinu-Pirvu, C. E., Armean, P., & Udeanu, D. I. (2019). The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity. PLOS ONE, 14(1), Article e0210288. https://doi.org/10.1371/journal.pone.0210288

Zhang, Y., Li, C., Zhang, W., Zheng, X., & Chen, X. (2020). Decreased Insulin Resistance by Myo-Inositol Is Associated with Suppressed Interleukin 6/Phospho-STAT3 Signaling in a Rat Polycystic Ovary Syndrome Model. Journal of Medicinal Food, 23(4), 375-387. https://doi.org/10.1089/jmf.2019.4580

Kimura, A., & Kishimoto, T. (2010). IL-6: regulator of Treg/Th17 balance. European Journal of Immunology, 40(7), 1830-1835. https://doi.org/10.1002/eji.201040391

El-Alameey, I. R., Fadl, N. N., Hameed, E. R., Sherif, L. S., & Ahmed, H. H. (2015). Clinical Relevance of Transforming Growth Factor-β1, Interleukin-6 and Haptoglobin for Prediction of Obesity Complications in Prepubertal Egyptian Children. Open Access Macedonian Journal of Medical Sciences, 3(1), 105-110. https://doi.org/10.3889/oamjms.2015.017

Li, J., Yang, S., Jiao, X., Yang, Y., Sun, H., Zhang, M., Yang, Y., Qin, Y., & Wei, Y. (2019). Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung, 197(5), 577-584. https://doi.org/10.1007/s00408-019-00254-z

##submission.downloads##

Опубліковано

2021-09-01

Номер

Розділ

Оригінальні дослідження