Association of leptin receptor gene polymorphisms and meta-inflammation markers with metabolically unhealthy obesity in children
DOI:
https://doi.org/10.14739/2310-1210.2021.5.227291Keywords:
leptin receptor gene, polymorphism, interleukin-6, meta-inflammation, obesity, childrenAbstract
The aim: to study the contribution of single-nucleotide polymorphisms (SNP) of the leptin receptor (LEPR) gene and meta-inflammation markers to the formation of metabolically unhealthy obesity (MUO) in children.
Materials and methods. A total of 109 obese children aged 6–18 years were examined. Based on the recommendations of the National Heart, Lung, and Blood Institute (NHLBI), 2 observation groups were formed. The main group (n = 56) was represented by patients with MUO. The control group (n = 53) comprised children with metabolically healthy obesity (MHO). Serum levels of interleukin-1β (IL-1β) were measured using a chemiluminescent immunoassay (CLIA) method, interleukin-6, leptin, adiponectin – by enzyme-linked immunosorbent assay (ELISA) and the serum level of C-reactive protein were quantified by latex turbidimetric method (Synevo, Ukraine). The method of next-generation sequencing (NGS) (CeXGat, Germany) was used to identify LEPR SNP. Statistical methods were used: analysis of variance, Spearman’s correlation analysis and multiple discriminant analysis.
Results. In obese children aged 6 to 18 years, there was an increase in pro-inflammatory adipokines IL-6 and leptin and a decrease in anti-inflammatory adiponectin. Statistically significant changes in these indicators were more expressed in the main group: IL-6 – 7.4 ± 0.5 pg/ml (ρ = 0.65; P ≤ 0.001); adiponectin – 3.9 ± 0.8 μg/ml (ρ = -0.27; P = 0.007) among all the children examined, leptin in girls – 47.8 ± 4.4 ng/ml (ρ = -0.28; P = 0.003) compared with the results of patients in the control group: IL-6 – 4.3 ± 0.3 pg/ml, adiponectin – 7.7 ± 2.4 μg/ml, leptin in girls – 32.5 ± 4.3 ng/ml, P ≤ 0.05. The most important in the development of MUO were the following SNP of the LEPR gene: rs3790435 (CiMUO = 0.939), rs2186248 (CiMUO = 0.862), P < 0.05. A strong correlation was found between MUO and serum IL-6 level (ρ = 0.7), LEPR SNP rs3790435 (ρ = 0.7), basal hyperinsulinemia (ρ = 0.72); Р ≤ 0.001. The risk of IL-6-dependent meta-inflammation in the presence of SNP rs3790435 of the LEPR gene: OR = 17.11; 95 % CI 2.8–20.4.
Conclusions. Meta-inflammation in MUO is IL-6-dependent. Among the 10 SNPs of the LEPR gene that we identified, SNP rs3790435 of the LEPR gene has a strong association with the formation of MUO. SNP rs2186248 LEPR was described by us for the first time when it was found in 94.1 % of obese children, but it was characterized by the presence of a weak association with MUO.
References
Lobstein, T., & Brinsden, H. (2019). Atlas of Childhood Obesity. World Obesity Federation. https://data.worldobesity.org/publications/11996-Childhood-Obesity-Atlas-Report-ART-V2.pdf
Genovesi, S., Antolini, L., Orlando, A., Gilardini, L., Bertoli, S., Giussani, M., Invitti, C., Nava, E., Battaglino, M. G., Leone, A., Valsecchi, M. G., & Parati, G. (2020). Cardiovascular Risk Factors Associated With the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Frontiers in Endocrinology, 11, Article 27. https://doi.org/10.3389/fendo.2020.00027
Magge, S. N., Goodman, E., Armstrong, S. C., COMMITTEE ON NUTRITION, SECTION ON ENDOCRINOLOGY, & SECTION ON OBESITY. (2017). The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics, 140(2), Article e20171603. https://doi.org/10.1542/peds.2017-1603
Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, & National Heart, Lung, and Blood Institute. (2011). Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics, 128(Suppl 5), S213-S256. https://doi.org/10.1542/peds.2009-2107C
Abaturov, A., & Nikulina, A. (2019). Genotype C/C 13910 of the Lactase Gene as a Risk Factor for the Formation of Insulin-Resistant Obesity in Children. Acta Medica, 62(4), 150-155. https://doi.org/10.14712/18059694.2020.4
Elkins, C., Fruh, S., Jones, L., & Bydalek, K. (2019). Clinical Practice Recommendations for Pediatric Dyslipidemia. Journal of Pediatric Health Care, 33(4), 494-504. https://doi.org/10.1016/j.pedhc.2019.02.009
Vukovic, R., Dos Santos, T. J., Ybarra, M., & Atar, M. (2019). Children With Metabolically Healthy Obesity: A Review. Frontiers in Endocrinology, 10, Article 865. https://doi.org/10.3389/fendo.2019.00865
Tsatsoulis, A., & Paschou, S. A. (2020). Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Current Obesity Reports, 9(2), 109-120. https://doi.org/10.1007/s13679-020-00375-0
Nunziata, A., Funcke, J. B., Borck, G., von Schnurbein, J., Brandt, S., Lennerz, B., Moepps, B., Gierschik, P., Fischer-Posovszky, P., & Wabitsch, M. (2018). Functional and Phenotypic Characteristics of Human Leptin Receptor Mutations. Journal of the Endocrine Society, 3(1), 27-41. https://doi.org/10.1210/js.2018-00123
Voigtmann, F., Wolf, P., Landgraf, K., Stein, R., Kratzsch, J., Schmitz, S., Abou Jamra, R., Blüher, M., Meiler, J., Beck-Sickinger, A. G., Kiess, W., & Körner, A. (2021). Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing treatment decisions in patients with morbid obesity. Metabolism, 116, Article 154438. https://doi.org/10.1016/j.metabol.2020.154438
Li, J., Yang, S., Jiao, X., Yang, Y., Sun, H., Zhang, M., Yang, Y., Qin, Y., & Wei, Y. (2019). Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung, 197(5), 577-584. https://doi.org/10.1007/s00408-019-00254-z
Rojano-Rodriguez, M. E., Beristain-Hernandez, J. L., Zavaleta-Villa, B., Maravilla, P., Romero-Valdovinos, M., & Olivo-Diaz, A. (2016). Leptin receptor gene polymorphisms and morbid obesity in Mexican patients. Hereditas, 153, Article 2. https://doi.org/10.1186/s41065-016-0006-0
Manriquez, V., Aviles, J., Salazar, L., Saavedra, N., Seron, P., Lanas, F., Fajardo, C. M., Hirata, M. H., Hirata, R., & Cerda, A. (2018). Polymorphisms in Genes Involved in the Leptin-Melanocortin Pathway are Associated with Obesity-Related Cardiometabolic Alterations in a Southern Chilean Population. Molecular Diagnosis & Therapy, 22(1), 101-113. https://doi.org/10.1007/s40291-017-0306-8
Wu, J., Zhuo, Q., Tian, Y., Piao, J., & Yang, X. (2017). [Relationship of diabetes mellitus in older Han adults in China with leptin receptor gene rs1137100 and rs1137101 polymorphrism]. Wei sheng yan jiu, 46(3), 384-388.
Almeida, S. M., Furtado, J. M., Mascarenhas, P., Ferraz, M. E., Ferreira, J. C., Monteiro, M. P., Vilanova, M., & Ferraz, F. P. (2018). Association between LEPR, FTO, MC4R, and PPARG-2 polymorphisms with obesity traits and metabolic phenotypes in school-aged children. Endocrine, 60(3), 466-478. https://doi.org/10.1007/s12020-018-1587-3
Almandil, N. B., Lodhi, R. J., Ren, H., Besag, F., Rossolatos, D., Ohlsen, R., Slomp, C., Lapetina, D. L., Plazzotta, G., Murray, M. L., Al-Sulaiman, A. A., Gringras, P., Wong, I., & Aitchison, K. J. (2018). Associations between the LEP -2548G/A Promoter and Baseline Weight and between LEPR Gln223Arg and Lys656Asn Variants and Change in BMI z Scores in Arab Children and Adolescents Treated with Risperidone. Molecular Neuropsychiatry, 4(2), 111-117. https://doi.org/10.1159/000490463
Ren, D., Xu, J. H., Bi, Y., Zhang, Z., Zhang, R., Li, Y., Hu, J., Guo, Z., Niu, W., Yang, F., Li, W., Xu, Y., He, L., Yu, T., Wu, J., Li, X., Du, J., & He, G. (2019). Association study between LEPR, MC4R polymorphisms and overweight/obesity in Chinese Han adolescents. Gene, 692, 54-59. https://doi.org/10.1016/j.gene.2018.12.073
Fairbrother, U., Kidd, E., Malagamuwa, T., & Walley, A. (2018). Genetics of Severe Obesity. Current Diabetes Reports, 18(10), Article 85. https://doi.org/10.1007/s11892-018-1053-x
Dos Santos Rocha, A., de Cássia Ribeiro-Silva, R., Nunes de Oliveira Costa, G., Alexandrina Figueiredo, C., Cunha Rodrigues, L., Maria Alvim Matos, S., Leovigildo Fiaccone, R., Oliveira, P. R., Alves-Santos, N. H., Blanton, R. E., & Lima Barreto, M. (2018). Food Consumption as a Modifier of the Association between LEPR Gene Variants and Excess Body Weight in Children and Adolescents: A Study of the SCAALA Cohort. Nutrients, 10(8), Article 1117. https://doi.org/10.3390/nu10081117
Furusawa, T., Naka, I., Yamauchi, T., Natsuhara, K., Kimura, R., Nakazawa, M., Ishida, T., Inaoka, T., Matsumura, Y., Ataka, Y., Nishida, N., Tsuchiya, N., Ohtsuka, R., & Ohashi, J. (2010). The Q223R polymorphism in LEPR is associated with obesity in Pacific Islanders. Human Genetics, 127(3), 287-294. https://doi.org/10.1007/s00439-009-0768-9
Abaturov, A., & Nikulina, A. (2021). The Role of Leptin Receptor Gene Polymorphism in the Formation of Insulin Resistance in Children. Metabolism, 116, Article 154672. https://doi.org/10.1016/j.metabol.2020.154672
WHO Multicentre Growth Reference Study Group. (2006). WHO Child Growth Standards based on length/height, weight and age. Acta Paediatrica, 95(S450), 76-85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x
American Diabetes Association. (2019). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care, 42(Suppl. 1), S13-S28. https://doi.org/10.2337/dc19-S002
Alberti, K. G., Zimmet, P., & Shaw, J. (2007). International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabetic Medicine, 24(5), 451-463. https://doi.org/10.1111/j.1464-5491.2007.02157.x
Weihe, P., & Weihrauch-Blüher, S. (2019). Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Current Obesity Reports, 8(4), 472-479. https://doi.org/10.1007/s13679-019-00357-x
Ranasinghe, P., Jayawardena, R., Gamage, N., Pujitha Wickramasinghe, V., & Hills, A. P. (2021). The range of non-traditional anthropometric parameters to define obesity and obesity-related disease in children: a systematic review. European Journal of Clinical Nutrition, 75(2), 373-384. https://doi.org/10.1038/s41430-020-00715-2
Peplies, J., Jiménez-Pavón, D., Savva, S. C., Buck, C., Günther, K., Fraterman, A., Russo, P., Iacoviello, L., Veidebaum, T., Tornaritis, M., De Henauw, S., Mårild, S., Molnár, D., Moreno, L. A., Ahrens, W., & IDEFICS consortium. (2014). Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort. International Journal of Obesity, 38(Suppl. 2), S39-S47. https://doi.org/10.1038/ijo.2014.134
Haugaard, L. K., Baker, J. L., Perng, W., Belfort, M. B., Rifas-Shiman, S. L., Switkowski, K., Oken, E., & Gillman, M. W. (2016). Growth in Total Height and Its Components and Cardiometabolic Health in Childhood. PLOS ONE, 11(9), Article e0163564. https://doi.org/10.1371/journal.pone.0163564
ACMG Board of Directors. (2015). Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genetics in Medicine, 17(6), 505-507. https://doi.org/10.1038/gim.2015.41
Jiang, H., Lei, R., Ding, S. W., & Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics, 15, Article 182. https://doi.org/10.1186/1471-2105-15-182
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
Mose, L. E., Wilkerson, M. D., Hayes, D. N., Perou, C. M., & Parker, J. S. (2014). ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics, 30(19), 2813-2815. https://doi.org/10.1093/bioinformatics/btu376
Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control [version 2; peer review: 4 approved]. F1000Research, 7, Article 1338. https://doi.org/10.12688/f1000research.15931.2
Wickham, H. (2009). Manipulating data. In ggplot2 (pp. 157-175). Springer. https://doi.org/10.1007/978-0- 387-98141-3_9
R-Project. (n.d.). The R Project for Statistical Computing. https://www.r-project.org/
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research, 47(D1), D886-D894. https://doi.org/10.1093/nar/gky1016
Vigeland, M. D., Gjotterud, K. S., & Selmer, K. K. (2016). FILTUS: a desktop GUI for fast and efficient detection of disease-causing variants, including a novel autozygosity detector. Bioinformatics, 32(10), 1592-1594. https://doi.org/10.1093/bioinformatics/btw046
Hu, Z., Fu, Y., Halees, A. S., Kielbasa, S. M., & Weng, Z. (2004). SeqVISTA: a new module of integrated computational tools for studying transcriptional regulation. Nucleic Acids Research, 32(Suppl. 2), W235-W241. https://doi.org/10.1093/nar/gkh483
Liu, X., Wu, C., Li, C., & Boerwinkle, E. (2016). dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Human Mutation, 37(3), 235-241. https://doi.org/10.1002/humu.22932
Ambroszkiewicz, J., Klemarczyk, W., Gajewska, J., Chełchowska, M., Rowicka, G., Ołtarzewski, M., & Laskowska-Klita, T. (2011). Serum concentration of adipocytokines in prepubertal vegetarian and omnivorous children. Medycyna wieku rozwojowego, 15(3), 326-334.
Han, M. S., White, A., Perry, R. J., Camporez, J. P., Hidalgo, J., Shulman, G. I., & Davis, R. J. (2020). Regulation of adipose tissue inflammation by interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2751-2760. https://doi.org/10.1073/pnas.1920004117
Wueest, S., & Konrad, D. (2018). The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte, 7(3), 226-228. https://doi.org/10.1080/21623945.2018.1493901
Lehrskov, L. L., & Christensen, R. H. (2019). The role of interleukin-6 in glucose homeostasis and lipid metabolism. Seminars in Immunopathology, 41(4), 491-499. https://doi.org/10.1007/s00281-019-00747-2
Pîrsean, C., Neguț, C., Stefan-van Staden, R. I., Dinu-Pirvu, C. E., Armean, P., & Udeanu, D. I. (2019). The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity. PLOS ONE, 14(1), Article e0210288. https://doi.org/10.1371/journal.pone.0210288
Zhang, Y., Li, C., Zhang, W., Zheng, X., & Chen, X. (2020). Decreased Insulin Resistance by Myo-Inositol Is Associated with Suppressed Interleukin 6/Phospho-STAT3 Signaling in a Rat Polycystic Ovary Syndrome Model. Journal of Medicinal Food, 23(4), 375-387. https://doi.org/10.1089/jmf.2019.4580
Kimura, A., & Kishimoto, T. (2010). IL-6: regulator of Treg/Th17 balance. European Journal of Immunology, 40(7), 1830-1835. https://doi.org/10.1002/eji.201040391
El-Alameey, I. R., Fadl, N. N., Hameed, E. R., Sherif, L. S., & Ahmed, H. H. (2015). Clinical Relevance of Transforming Growth Factor-β1, Interleukin-6 and Haptoglobin for Prediction of Obesity Complications in Prepubertal Egyptian Children. Open Access Macedonian Journal of Medical Sciences, 3(1), 105-110. https://doi.org/10.3889/oamjms.2015.017
Li, J., Yang, S., Jiao, X., Yang, Y., Sun, H., Zhang, M., Yang, Y., Qin, Y., & Wei, Y. (2019). Targeted Sequencing Analysis of the Leptin Receptor Gene Identifies Variants Associated with Obstructive Sleep Apnoea in Chinese Han Population. Lung, 197(5), 577-584. https://doi.org/10.1007/s00408-019-00254-z
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)