Thiotriazolin effectiveness in complex treatment of patients with post-COVID syndrome

Authors

DOI:

https://doi.org/10.14739/2310-1210.2021.3.229981

Keywords:

Thiotriazolin, tablets, post-COVID syndrome, metabolitotropic effect, antiplatelet effect, anticoagulant effect

Abstract

The aim of this work is to evaluate the complex therapeutic effect of Thiotriazolin (anticoagulant, antiplatelet, metabolitotropic, endothelioprotective activity) in patients with post-COVID syndrome in comparison with basic therapy.

Materials and methods. The studies involved 30 patients aged between 30 to 60 years with post-COVID syndrome. Of these, 15 persons received basic therapy (antibiotics, anticoagulants, acetylsalicylic acid), and other 15 patients received Thiotriazolin in the form of 200 mg tablets twice a day for 30 days against the background of basic therapy. Inclusion criteria were a positive PCR test for COVID-19; if the PCR test was negative, then the patients were enrolled based on the presence of IgM COVID-19 or IgG COVID-19 (with X-ray confirmed pneumonia). The rate of lung damage is up to 45 %. The patients had the following comorbidities: diabetes mellitus in the stage of compensation, arterial hypertension, ischemic heart disease without heart failure. The results of the study were calculated using the standard statistical package Statistica for Windows 13 (StatSoft Inc., № JPZ804I382130ARCN10-J), аs well as SPSS 16.0, Microsoft Office Excel 2003.

Results. The inclusion of Thiotriazolin in the complex basic therapy of post-COVID syndrome led to a significant increase in the effectiveness of basic endothelioprotective, anticoagulant and antiaggregatory therapy and contributed to the prevention of thrombus formation. The administration of Thiotriazolin led to a significant improvement in general clinical parameters in patients with post-COVID syndrome – complaints of tachycardia disappeared, blood pressure was stabilized (without additional correction with antihypertensive drugs), weakness and increased fatigue disappeared. Saturation in 14 (93.4 %) patients increased to 97–98 %. In the control group only 7 (46.7 %) of 15 patients had oxygen saturation at 97–98 % level.

Conclusions. The introduction of the drug Thiotriazolin in the form of 200 mg tablets twice a day for 30 days into the complex basic therapy of post-COVID syndrome leads to a significant increase in the basic endothelioprotective, antiaggregatory and anticoagulant therapy and contributes to the prevention of thrombus formation against the background of improving the state of the myocardium and vascular endothelium.

Author Biographies

V. I. Kryvenko, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Family Medicine, Therapy, Cardiology and Neurology

M. Yu. Kolesnyk, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Рrofessor of the Department of Family Medicine, Therapy, Cardiology and Neurology

I. F. Bielenichev, Zaporizhzhia State Medical University, Ukraine

PhD, DSc, Professor, Head of the Department of Pharmacology and Medical Formulation with the Course of Normal Physiology

S. V. Pavlov, Zaporizhzhia State Medical University, Ukraine

PhD, DSc, Associate Professor, Head of the Department of Clinical Laboratory Diagnostics

References

Chary, M. A., Barbuto, A. F., Izadmehr, S., Hayes, B. D., & Burns, M. M. (2020). COVID-19: Therapeutics and Their Toxicities. Journal of Medical Toxicology, 16(3), 284-294. https://doi.org/10.1007/s13181-020-00777-5

Fan, E., Beitler, J. R., Brochard, L., Calfee, C. S., Ferguson, N. D., Slutsky, A. S., & Brodie, D. (2020). COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? The Lancet Respiratory Medicine, 8(8), 816-821. https://doi.org/10.1016/S2213-2600(20)30304-0

Wilson, J. G., Simpson, L. J., Ferreira, A. M., Rustagi, A., Roque, J., Asuni, A., Ranganath, T., Grant, P. M., Subramanian, A., Rosenberg-Hasson, Y., Maecker, H. T., Holmes, S. P., Levitt, J. E., Blish, C. A., & Rogers, A. J. (2020). Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight, 5(17), Article e140289. https://doi.org/10.1172/jci.insight.140289

Zhao, Z., Xie, J., Yin, M., Yang, Y., He, H., Jin, T., Li, W., Zhu, X., Xu, J., Zhao, C., Li, L., Li, Y., Mengist, H. M., Zahid, A., Yao, Z., Ding, C., Qi, Y., Gao, Y., & Ma, X. (2020, March 06). Clinical and Laboratory Profiles of 75 Hospitalized Patients with Novel Coronavirus Disease 2019 in Hefei, China. MedRxiv. https://doi.org/10.1101/2020.03.01.20029785

Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J. M., Daßler-Plenker, J., Guerci, P., Huynh, C., Knight, J. S., Loda, M., Looney, M. R., McAllister, F., Rayes, R., Renaud, S., Rousseau, S., Salvatore, S., Schwartz, R. E., Spicer, J. D., Yost, C. C., … Egeblad, M. (2020). Targeting potential drivers of COVID-19: Neutrophil extracellular traps. The Journal of Experimental Medicine, 217(6), Article e20200652. https://doi.org/10.1084/jem.20200652

Smeitink, J., Jiang, X., Pecheritsyna, S., Renkema, H., van Maanen, R., & Beyrath, J. (2020). Hypothesis: mPGES-1-Derived Prostaglandin E2, a So Far Missing Link in COVID-19 Pathophysiology? Preprints, Article 2020040180. https://doi.org/10.20944/preprints202004.0180.v1

Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., & Kritas, S. K. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of Biological Regulators and Homeostatic Agents, 34(2), 327-331. https://doi.org/10.23812/CONTI-E

Landi, L., Ravaglia, C., Russo, E., Cataleta, P., Fusari, M., Boschi, A., Giannarelli, D., Facondini, F., Valentini, I., Panzini, I., Lazzari-Agli, L., Bassi, P., Marchionni, E., Romagnoli, R., De Giovanni, R., Assirelli, M., Baldazzi, F., Pieraccini, F., Rametta, G., Rossi, L., … Cappuzzo, F. (2020). Blockage of interleukin-1β with canakinumab in patients with Covid-19. Scientific Reports, 10(1), Article 21775. https://doi.org/10.1038/s41598-020-78492-y

Guan, S. P., Seet, R., & Kennedy, B. K. (2020). Does eNOS derived nitric oxide protect the young from severe COVID-19 complications? Ageing Research Reviews, 64, Article 101201. https://doi.org/10.1016/j.arr.2020.101201

Green, S. J. (2020). Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes and Infection, 22(4-5), 149-150. https://doi.org/10.1016/j.micinf.2020.05.006

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234), 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5

Lapenna, D. (2021). Antioxidant therapy in COVID-19: The crucial role of early treatment and antioxidant typology. Clinical Infectious Diseases, Article ciab055. https://doi.org/10.1093/cid/ciab055

Fratta Pasini, A. M., Stranieri, C., Cominacini, L., & Mozzini, C. (2021). Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants, 10(2), Article 272. https://doi.org/10.3390/antiox10020272

Hati, S., & Bhattacharyya, S. (2020). Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS Omega, 5(26), 16292-16298. https://doi.org/10.1021/acsomega.0c02125

Miller, B., Silverstein, A., Flores, M., Cao, K., Kumagai, H., Mehta, H. H., Yen, K., Kim, S. J., & Cohen, P. (2021). Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples. Scientific Reports, 11(1), Article 3. https://doi.org/10.1038/s41598-020-79552-z

Chernyak, B. V., Popova, E. N., Prikhodko, A. S., Grebenchikov, O. A., Zinovkina, L. A., & Zinovkin, R. A. (2020). COVID-19 and Oxidative Stress. Biochemistry, 85(12), 1543-1553. https://doi.org/10.1134/S0006297920120068

Velavan, T. P., & Meyer, C. G. (2020). Mild versus severe COVID-19: Laboratory markers. International Journal of Infectious Diseases, 95, 304-307. https://doi.org/10.1016/j.ijid.2020.04.061

Smith, M., & Smith, J. C. (2020, March 10). Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. ChemRxiv. https://doi.org/10.26434/chemrxiv.11871402.v4

Iqubal, A., Iqubal, M. K., Hoda, F., Najmi, A. K., & Haque, S. E. (2021). COVID-19 and cardiovascular complications: an update from the underlying mechanism to consequences and possible clinical intervention. Expert Review of Anti-infective Therapy, 1-10. https://doi.org/10.1080/14787210.2021.1893692

Suhail, S., Zajac, J., Fossum, C., Lowater, H., McCracken, C., Severson, N., Laatsch, B., Narkiewicz-Jodko, A., Johnson, B., Liebau, J., Bhattacharyya, S., & Hati, S. (2020). Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. The Protein Journal, 39(6), 644-656. https://doi.org/10.1007/s10930-020-09935-8

Tyagi, S. C., & Singh, M. (2021). Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage. Molecular and Cellular Biochemistry, 476(4), 1891-1895. https://doi.org/10.1007/s11010-021-04054-z

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C., & Yang, C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity, 87, 18-22. https://doi.org/10.1016/j.bbi.2020.03.031

Bielenichev, I. F., Vizir, V. A. Mamchur, V. Yo., & Kuriata, O. V. (2019). Mesto tiotriazolina v galeree sovremennykh metabolitotropnykh lekarstvennykh sredstv [Place of tiotriazoline in the gallery of modern metabolitotropic medicines]. Zaporozhye medical journal, 21(1), 118-128. https://doi.org/10.14739/2310-1210.2019.1.155856 [in Russian].

Bezrukov, V. V., Kuprash, L. P., Horchakova, N. O., Bielenichev, I. F., Nahorna, O. O., Hrinenko, Yu. O., Kuprash, O. V., Hudarenko, S. O., Morhuntsova, S. A., & Ryzhenko, O. I. (2019). Farmakoterapiia v heriatrychnii klinitsi [Pharmacotherapy in a geriatric clinic]. Zhurfond. [in Ukrainian].

Vyzyr, V. A., Voloshyna, Y. N., Voloshyn, N. A., Mazur, Y. A., & Belenychev, Y. F. (2006). Metabolycheskye kardyoprotektorы: farmakolohycheskye svoistva y prymenenye v klynycheskoi praktyke [Metabolic cardioprotectors: pharmacological properties and clinical use]. ZGhMU. [in Russian].

Mazur, I. A., Chekman, I. S., Belenichev, I. F., Voloshin, N. A., Gorchakova, N. A., & Kucherenko, L. I. (2007). Metabolitotropnye preparaty [Metabolitotropic drugs]. Zaporozh'e. [in Russian].

Belenichev, I. F., Chernyi, V. I., Kolesnik, Yu. M., Pavlov, S. V., Andronova, I. A., Abramov, A. V., Ostrova, T. V., Bukhtiyarova, N. V., & Kucherenko, L. I. (2009). Ratsional'naya neiroprotektsiya [Rational neuroprotection]. Izdatel' Zaslavskii A. Yu.. [in Russian].

Mazur, I. A., Voloshin, N. A., Vizir, V. A., Voloshina, I. N., Belenichev, I. F., & Kucherenko, L. I. (2012). Tiotriazolin, tiodaron v lechenii serdechno-sosudistoi patologii [Thiotriazoline, thiodarone in the treatment of cardiovascular pathology]. Pechatnyi mir. [in Russian].

Belenichev, I. F., Chekman, I. S., Nagornaya, E. A., Gorbacheva, S. V., Gorchakova, N. A., Bukhtiyarova, N. V., Reznichenko, N. Yu., & Feroz Shakh. (2020). Tiol-disul'fidnaya sistema: rol' v endogennoi tsito- i organoprotektsii, puti farmakologicheskoi modulyatsii [Thiol-disulfide system: role in endogenous cyto- and organoprotection, pathways of pharmacological modulation]. TOV «Vidavnitstvo «Yuston». [in Russian].

Syusyuka, V. G., Kolokot, N. G., Belenichev, I. F., Kucherenko, L. I., & Hromylova, O. V. (2020). Sposib kompleksnoi tsytoprotektyvnoi terapii vahitnykh iz zatrymkoiu rostu ploda [Method of complex cytoprotective therapy of pregnant women with fetal growth retardation (No. 161-2020)]. Ukrmedpatentinform. [in Ukrainian].

Krut, Yu. Ya., Shevchenko, H. O., Kyryliuk, O. D., Siusiuka, V. H., Bielenichev, I. F., & Kucherenko, L. I. (2020). Sposib diahnostyky ta likuvannia zahrozy peredchasnykh polohiv [Method for diagnosing and treating the threat of premature birth (No. 97-2019)]. Ukrmedpatentinform. [in Ukrainian].

Published

2021-06-07

How to Cite

1.
Kryvenko VI, Kolesnyk MY, Bielenichev IF, Pavlov SV. Thiotriazolin effectiveness in complex treatment of patients with post-COVID syndrome. Zaporozhye medical journal [Internet]. 2021Jun.7 [cited 2024Apr.23];23(3):402-10. Available from: http://zmj.zsmu.edu.ua/article/view/229981

Issue

Section

Original research