Quercetin effectiveness in patients with COVID-19 associated pneumonia
DOI:
https://doi.org/10.14739/2310-1210.2021.5.231714Keywords:
quercetin, pneumonia, COVID-19, treatmentAbstract
The aim of this work was to evaluate the effectiveness of quercetin addition to the treatment regimen for patients with COVID-19 associated pneumonia.
Materials and methods. The effectiveness of two dosage forms of quercetin was studied in 200 patients, who were divided equally into the main and control groups. The main group patients received quercetin in addition to the basic therapy: intravenous drip of Quercetin/Polyvinylirolidone during the first 10 days followed by oral administration of Quercetin/Pectin over the next 10 days. Patients from the control group received only the basic therapy drugs.
The study evaluated the dynamics of the disease symptoms (saturation level, respiratory rate, body temperature, cough, general weakness), as well as laboratory markers (C-reactive protein (CRP), ferritin, D-dimer).
Results. Two dosage forms of quercetin consistently used in addition to the basic therapy improve pulmonary gas exchange and accelerate the lung function recovery. This is evidenced by a statistically significant majority of patients with positive dynamics in the symptoms of “Saturation level” and “Cough” as well as the meeting a complex indicator of the therapy effectiveness 2 days earlier than in the control group. The treatment regimen applied also helps to stabilize the level of D-dimer in the blood of the main group patients.
Conclusions. The use of two dosage forms of quercetin in addition to the basic therapy accelerates the recovery of patients with coronavirus disease associated pneumonia and can help to prevent the progression of COVID-19 associated coagulopathy.
References
World Health Organization. (2021, April 20). Weekly epidemiological update on COVID-19 - 20 April 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---20-april-2021
FDA. (2020, October 22). FDA Approves First Treatment for COVID-19. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19
Singh, B., Ryan, H., Kredo, T., Chaplin, M., & Fletcher, T. (2021). Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database of Systematic Reviews, 2(2), Article CD013587. https://doi.org/10.1002/14651858.CD013587.pub2
Metlay, J. P., & Waterer, G. W. (2020). Treatment of Community-Acquired Pneumonia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Annals of Internal Medicine, 173(4), 304-305. https://doi.org/10.7326/M20-2189
Griffiths, M., McAuley, D. F., Perkins, G. D., Barrett, N., Blackwood, B., Boyle, A., Chee, N., Connolly, B., Dark, P., Finney, S., Salam, A., Silversides, J., Tarmey, N., Wise, M. P., & Baudouin, S. V. (2019). Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respiratory Research, 6(1), Article e000420. https://doi.org/10.1136/bmjresp-2019-000420
Ascierto, P. A., Fu, B., & Wei, H. (2021). IL-6 modulation for COVID-19: the right patients at the right time? Journal for ImmunoTherapy of Cancer, 9(4), Article e002285. https://doi.org/10.1136/jitc-2020-002285
Ozgen, S., Kilinc, O. K., & Selamoğlu, Z. (2016). Antioxidant Activity of Quercetin: A Mechanistic Review. Turkish Journal of Agriculture - Food Science and Technology, 4(12), 1134-1138. https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069
Zhang, M., Swarts, S. G., Yin, L., Liu, C., Tian, Y., Cao, Y., Swarts, M., Yang, S., Zhang, S. B., Zhang, K., Ju, S., Olek, D. J., Schwartz, L., Keng, P. C., Howell, R., Zhang, L., & Okunieff, P. (2011). Antioxidant Properties of Quercetin. In J. LaManna, M. Puchowicz, K. Xu, D. Harrison, & D. Bruley (Eds.). Oxygen Transport to Tissue XXXII (Vol. 701, pp. 283-289). Springer US. https://doi.org/10.1007/978-1-4419-7756-4_38
Xiao, X., Shi, D., Liu, L., Wang, J., Xie, X., Kang, T., & Deng, W. (2011). Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis through Inactivation of P300 Signaling. PLOS ONE, 6(8), Article e22934. https://doi.org/10.1371/journal.pone.0022934
Shebeko, S. K., Zupanets, I. A., Popov, O. S., Tarasenko, O. O., & Shalamay, A. S. (2018). Chapter 27 - Effects of Quercetin and Its Combinations on Health. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols: Mechanisms of Action in Human Health and Disease (2nd ed., pp. 373-394). Academic Press. https://doi.org/10.1016/B978-0-12-813006-3.00027-1
Marik, P. (2020, May 5). EVMS critical care COVID-19 management protocol. EVMS Medical Group. https://www.sbk-vs.de/images/pdf/downloads/Corona/EVMS_Critical_Care_COVID-19_Protocol.pdf?m=1606470173&
Usenko, V. F., Zupanets, I. A., Tarasenko, O. O., & Shebeko, S. K. (2012). Eksperymentalne doslidzhennia farmakokinetychnykh vlastyvostei kvertsetynu pry peroralnomu zastosuvanni z modyfikatoramy rozchynnosti [Experimental study of pharmacokinetic properties of quercetin at oral apрlication with modifiers of solubility]. Medychna i klinichna khimiia, 14(1), 91-95. [in Ukrainian].
Parkhomenko, A. N., & Kozhukhov, S. N. (2014). Rezul’taty otkrytogo randomizirovannogo issledovaniya po izucheniyu perenosimosti i effektivnosti preparata Korvitin® u patsientov s zastoinoi serdechnoi nedostatochnost’yu i sistolicheskoi disfunktsiei levogo zheludochka [The results of an open randomized study to investigate the tolerability and efficacy of Corvitin® in patients with congestive heart failure and left ventricular systolic dysfunction]. Ukrainskyi medychnyi chasopys, (4), 71-76. [in Russian].
Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., & Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234), 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5
Chornomydz, I. B. (2011). Kliniko-patohenetychne obgruntuvannia zastosuvannia kvertsytynu u kompleksnomu likuvanni ditei iz hostroiu pozalikarnianoiu pnevmoniieiu [Clinical and nosotropic ground of application of quercetin in complex treatment of children with acute extrahospital pneumonia]. Visnyk naukovykh doslidzhen, (1), 34-36. [in Ukrainian].
Fedortsiv, O. Ye., Chornomydz, I. B., & Behosh, N. B. (2013). Klinichna efektyvnist vykorystannia kvertsetynu u kompleksnomu likuvanni ditei, khvorykh na pozalikarnianu pnevmoniiu [Clinical efficiency quercetin in complex treatment of children with community-acquired pneumonia]. Aktualni pytannia pediatrii, akusherstva ta hinekolohii, (2), 7-9. [in Ukrainian].
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)