Characteristics of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation

Authors

DOI:

https://doi.org/10.14739/2310-1210.2022.1.235880

Keywords:

CD56-positive cell, lung, guinea pigs, allergy, immunohistochemical staining, neuroendocrine cells

Abstract

The aim of this work is to study morphometric characteristics and distribution of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation.

Materials and methods. We studied the distribution and quantitative changes of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation using histological, histochemical, immunohistochemical, morphometric and statistical methods.

Results. The number of CD56-positive cells increased in the dynamics of experimental ovalbumin-induced allergic inflammation. The increase in the mean number of CD56-positive cells was found in the early period of allergic inflammation (on the 30th day, experimental group II) by 64.5 % (P*/** < 0.001) compared to the control group and by 56.4 % (P* < 0.01) compared to the 23rd day of examinations (experimental group I). The following increase in the mean number of CD56-positive cells by 60.2 % (P*/** < 0.001) was detected in group III compared to the 23rd day of the experiment (group I). However, the mean number of CD56-positive cells was shown to be decreased by 51.5 % (P*/** < 0.001) in group IV compared to the 36th experimental day (group III).

Conclusions. CD56-positive cells are located in the pulmonary interstitium. The number of CD56-positive cells is statistically significantly increased in group III in the late stages of the allergic inflammation indicating an active involvement of these cells in maintaining allergen-induced airway inflammation.

 

Author Biographies

S. S. Popko, Zaporizhzhia State Medical University, Ukraine

MD, PhD, Associate Professor of the Department of Histology, Cytology and Embryology

V. M. Yevtushenko, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Head of the Department of Histology, Cytology and Embryology

H. A. Zidrashko, Zaporizhzhia State Medical University, Ukraine

MD, PhD, Associate Professor of the Department of Histology, Cytology and Embryology

References

Van Acker, H. H., Capsomidis, A., Smits, E. L., & Van Tendeloo, V. F. (2017). CD56 in the Immune System: More Than a Marker for Cytotoxicity? Frontiers in Immunology, 8, Article 892. https://doi.org/10.3389/fimmu.2017.00892

Zhang, R., Ni, F., Fu, B., Wu, Y., Sun, R., Tian, Z., & Wei, H. (2016). A long noncoding RNA positively regulates CD56 in human natural killer cells. Oncotarget, 7(45), 72546-72558. https://doi.org/10.18632/oncotarget.12466

Mace, E. M., Gunesch, J. T., Dixon, A., & Orange, J. S. (2016). Human NK cell development requires CD56-mediated motility and formation of the developmental synapse. Nature Communications, 7, Article 12171. https://doi.org/10.1038/ncomms12171

Liao, C.-F., Chen, C.-C., Lu, Y.-W., Yao, C.-H., Lin, J.-H., Way, T.-D., Yang, T.-Y., & Chen, Y.-S. (2019). Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. Journal of Biological Engineering, 13, Article 86. https://doi.org/10.1186/s13036-019-0216-x

Garg, A., Sui, P., Verheyden, J. M., Young, L. R., & Sun, X. (2019). Chapter Three - Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. In D. M. Wellik (Ed.), Current Topics in Developmental Biology (Vol. 132, pp. 67-89). Academic Press. https://doi.org/10.1016/bs.ctdb.2018.12.002

Kobayashi, Y., & Tata, P. R. (2018). Pulmonary Neuroendocrine Cells: Sensors and Sentinels of the Lung. Developmental Cell, 45(4), 425-426. https://doi.org/10.1016/j.devcel.2018.05.009

Klein Wolterink, R., Pirzgalska, R. M., & Veiga-Fernandes, H. (2018). Neuroendocrine Cells Take Your Breath Away. Immunity, 49(1), 9-11. https://doi.org/10.1016/j.immuni.2018.06.010

Branchfield, K., Nantie, L., Verheyden, J. M., Sui, P., Wienhold, M. D., & Sun, X. (2016). Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science, 351(6274), 707-710. https://doi.org/10.1126/science.aad7969

Veiga-Fernandes, H., & Artis, D. (2018). Neuronal-immune system cross-talk in homeostasis. Science, 359(6383), 1465-1466. https://doi.org/10.1126/science.aap9598

Akdis, C. A., Arkwright, P. D., Brüggen, M. C., Busse, W., Gadina, M., Guttman-Yassky, E., Kabashima, K., Mitamura, Y., Vian, L., Wu, J., & Palomares, O. (2020). Type 2 immunity in the skin and lungs. Allergy, 75(7), 1582-1605. https://doi.org/10.1111/all.14318

Popko, S. S., Yevtushenko, V. M., & Syrtsov, V. K. (2020). Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye medical journal, 22(4), 568-575. https://doi.org/10.14739/2310-1210.2020.4.208411

Wallrapp, A., Riesenfeld, S. J., Burkett, P. R., Abdulnour, R. E., Nyman, J., Dionne, D., Hofree, M., Cuoco, M. S., Rodman, C., Farouq, D., Haas, B. J., Tickle, T. L., Trombetta, J. J., Baral, P., Klose, C., Mahlakõiv, T., Artis, D., Rozenblatt-Rosen, O., Chiu, I. M., Levy, B. D., … Kuchroo, V. K. (2017). The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature, 549(7672), 351-356. https://doi.org/10.1038/nature24029

Löser, S., & Maizels, R. M. (2018). Immunology: The Neuronal Pathway to Mucosal Immunity. Current Biology, 28(1), R33-R36. https://doi.org/10.1016/j.cub.2017.11.025

Popko, S. S. (2021). Morphological rearrangement of the metabolic link of the microcirculatory bed of guinea pigs lungs after sensitization with ovalbumin. Current issues in pharmacy and medicine: science and practice, 14(1), 79-83. https://doi.org/10.14739/2409-2932.2021.1.226851

Dey, P. (2018). Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8252-8

Adner, M., Canning, B. J., Meurs, H., Ford, W., Ramos Ramírez, P., van den Berg, M., Birrell, M. A., Stoffels, E., Lundblad, L., Nilsson, G. P., Olsson, H. K., Belvisi, M. G., & Dahlén, S. E. (2020). Back to the future: re-establishing guinea pig in vivo asthma models. Clinical Science, 134(11), 1219-1242. https://doi.org/10.1042/CS20200394

Messaritakis, I., Stoltidis, D., Kotsakis, A., Dermitzaki, E. K., Koinis, F., Lagoudaki, E., Koutsopoulos, A., Politaki, E., Apostolaki, S., Souglakos, J., & Georgoulias, V. (2017). TTF-1- and/or CD56-positive Circulating Tumor Cells in patients with small cell lung cancer (SCLC). Scientific Reports, 7, Article 45351. https://doi.org/10.1038/srep45351

Yatabe, Y., Dacic, S., Borczuk, A. C., Warth, A., Russell, P. A., Lantuejoul, S., Beasley, M. B., Thunnissen, E., Pelosi, G., Rekhtman, N., Bubendorf, L., Mino-Kenudson, M., Yoshida, A., Geisinger, K. R., Noguchi, M., Chirieac, L. R., Bolting, J., Chung, J. H., Chou, T. Y., Chen, G., … Moreira, A. L. (2019). Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. Journal of Thoracic Oncology, 14(3), 377-407. https://doi.org/10.1016/j.jtho.2018.12.005

Ueda, K., Ueda, A., & Ozaki, K. (2019). A case of a malignant peripheral nerve sheath tumor in a guinea pig. Journal of Veterinary Medical Science, 81(12), 1859-1862. https://doi.org/10.1292/jvms.19-0464

Rooper, L. M., Bishop, J. A., & Westra, W. H. (2018). INSM1 is a Sensitive and Specific Marker of Neuroendocrine Differentiation in Head and Neck Tumors. The American Journal of Surgical Pathology, 42(5), 665-671. https://doi.org/10.1097/PAS.0000000000001037

Rooper, L. M., Sharma, R., Li, Q. K., Illei, P. B., & Westra, W. H. (2017). INSM1 Demonstrates Superior Performance to the Individual and Combined Use of Synaptophysin, Chromogranin and CD56 for Diagnosing Neuroendocrine Tumors of the Thoracic Cavity. The American Journal of Surgical Pathology, 41(11), 1561-1569. https://doi.org/10.1097/PAS.0000000000000916

Sakakibara, R., Kobayashi, M., Takahashi, N., Inamura, K., Ninomiya, H., Wakejima, R., Kitazono, S., Yanagitani, N., Horiike, A., Ichinose, J., Matsuura, Y., Nakao, M., Mun, M., Nishio, M., Okumura, S., Motoi, N., Ito, T., Miyazaki, Y., Inase, N., & Ishikawa, Y. (2020). Insulinoma-associated Protein 1 (INSM1) Is a Better Marker for the Diagnosis and Prognosis Estimation of Small Cell Lung Carcinoma Than Neuroendocrine Phenotype Markers Such as Chromogranin A, Synaptophysin, and CD56. The American Journal of Surgical Pathology, 44(6), 757-764. https://doi.org/10.1097/PAS.0000000000001444

Kriegsmann, K., Zgorzelski, C., Muley, T., Christopoulos, P., Thomas, M., Winter, H., Eichhorn, M., Eichhorn, F., von Winterfeld, M., Herpel, E., Goeppert, B., Stenzinger, A., Herth, F., Warth, A., & Kriegsmann, M. (2021). Role of Synaptophysin, Chromogranin and CD56 in adenocarcinoma and squamous cell carcinoma of the lung lacking morphological features of neuroendocrine differentiation: a retrospective large-scale study on 1170 tissue samples. BMC Cancer, 21(1), Article 486. https://doi.org/10.1186/s12885-021-08140-9

Anguille, S., Van Acker, H. H., Van den Bergh, J., Willemen, Y., Goossens, H., Van Tendeloo, V. F., Smits, E. L., Berneman, Z. N., & Lion, E. (2015). Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLOS ONE, 10(5), Article e0123340. https://doi.org/10.1371/journal.pone.0123340

Jiao, Y., Huntington, N. D., Belz, G. T., & Seillet, C. (2016). Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells. Frontiers in Immunology, 7, Article 426. https://doi.org/10.3389/fimmu.2016.00426

Gunesch, J. T., Dixon, A. L., Ebrahim, T. A., Berrien-Elliott, M. M., Tatineni, S., Kumar, T., Hegewisch-Solloa, E., Fehniger, T. A., & Mace, E. M. (2020). CD56 regulates human NK cell cytotoxicity through Pyk2. eLife, 9, Article e57346. https://doi.org/10.7554/eLife.57346

Chen, L., Youssef, Y., Robinson, C., Ernst, G. F., Carson, M. Y., Young, K. A., Scoville, S. D., Zhang, X., Harris, R., Sekhri, P., Mansour, A. G., Chan, W. K., Nalin, A. P., Mao, H. C., Hughes, T., Mace, E. M., Pan, Y., Rustagi, N., Chatterjee, S. S., Gunaratne, P. H., … Freud, A. G. (2018). CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell

Downloads

Published

2022-01-26

How to Cite

1.
Popko SS, Yevtushenko VM, Zidrashko HA. Characteristics of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation. Zaporozhye medical journal [Internet]. 2022Jan.26 [cited 2024Apr.24];24(1):79-83. Available from: http://zmj.zsmu.edu.ua/article/view/235880

Issue

Section

Original research