Characteristics of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation
DOI:
https://doi.org/10.14739/2310-1210.2022.1.235880Keywords:
CD56-positive cell, lung, guinea pigs, allergy, immunohistochemical staining, neuroendocrine cellsAbstract
The aim of this work is to study morphometric characteristics and distribution of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation.
Materials and methods. We studied the distribution and quantitative changes of CD56-positive cells in guinea pig lung in the dynamics of experimental allergic inflammation using histological, histochemical, immunohistochemical, morphometric and statistical methods.
Results. The number of CD56-positive cells increased in the dynamics of experimental ovalbumin-induced allergic inflammation. The increase in the mean number of CD56-positive cells was found in the early period of allergic inflammation (on the 30th day, experimental group II) by 64.5 % (P*/** < 0.001) compared to the control group and by 56.4 % (P* < 0.01) compared to the 23rd day of examinations (experimental group I). The following increase in the mean number of CD56-positive cells by 60.2 % (P*/** < 0.001) was detected in group III compared to the 23rd day of the experiment (group I). However, the mean number of CD56-positive cells was shown to be decreased by 51.5 % (P*/** < 0.001) in group IV compared to the 36th experimental day (group III).
Conclusions. CD56-positive cells are located in the pulmonary interstitium. The number of CD56-positive cells is statistically significantly increased in group III in the late stages of the allergic inflammation indicating an active involvement of these cells in maintaining allergen-induced airway inflammation.
References
Van Acker, H. H., Capsomidis, A., Smits, E. L., & Van Tendeloo, V. F. (2017). CD56 in the Immune System: More Than a Marker for Cytotoxicity? Frontiers in Immunology, 8, Article 892. https://doi.org/10.3389/fimmu.2017.00892
Zhang, R., Ni, F., Fu, B., Wu, Y., Sun, R., Tian, Z., & Wei, H. (2016). A long noncoding RNA positively regulates CD56 in human natural killer cells. Oncotarget, 7(45), 72546-72558. https://doi.org/10.18632/oncotarget.12466
Mace, E. M., Gunesch, J. T., Dixon, A., & Orange, J. S. (2016). Human NK cell development requires CD56-mediated motility and formation of the developmental synapse. Nature Communications, 7, Article 12171. https://doi.org/10.1038/ncomms12171
Liao, C.-F., Chen, C.-C., Lu, Y.-W., Yao, C.-H., Lin, J.-H., Way, T.-D., Yang, T.-Y., & Chen, Y.-S. (2019). Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. Journal of Biological Engineering, 13, Article 86. https://doi.org/10.1186/s13036-019-0216-x
Garg, A., Sui, P., Verheyden, J. M., Young, L. R., & Sun, X. (2019). Chapter Three - Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. In D. M. Wellik (Ed.), Current Topics in Developmental Biology (Vol. 132, pp. 67-89). Academic Press. https://doi.org/10.1016/bs.ctdb.2018.12.002
Kobayashi, Y., & Tata, P. R. (2018). Pulmonary Neuroendocrine Cells: Sensors and Sentinels of the Lung. Developmental Cell, 45(4), 425-426. https://doi.org/10.1016/j.devcel.2018.05.009
Klein Wolterink, R., Pirzgalska, R. M., & Veiga-Fernandes, H. (2018). Neuroendocrine Cells Take Your Breath Away. Immunity, 49(1), 9-11. https://doi.org/10.1016/j.immuni.2018.06.010
Branchfield, K., Nantie, L., Verheyden, J. M., Sui, P., Wienhold, M. D., & Sun, X. (2016). Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science, 351(6274), 707-710. https://doi.org/10.1126/science.aad7969
Veiga-Fernandes, H., & Artis, D. (2018). Neuronal-immune system cross-talk in homeostasis. Science, 359(6383), 1465-1466. https://doi.org/10.1126/science.aap9598
Akdis, C. A., Arkwright, P. D., Brüggen, M. C., Busse, W., Gadina, M., Guttman-Yassky, E., Kabashima, K., Mitamura, Y., Vian, L., Wu, J., & Palomares, O. (2020). Type 2 immunity in the skin and lungs. Allergy, 75(7), 1582-1605. https://doi.org/10.1111/all.14318
Popko, S. S., Yevtushenko, V. M., & Syrtsov, V. K. (2020). Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye medical journal, 22(4), 568-575. https://doi.org/10.14739/2310-1210.2020.4.208411
Wallrapp, A., Riesenfeld, S. J., Burkett, P. R., Abdulnour, R. E., Nyman, J., Dionne, D., Hofree, M., Cuoco, M. S., Rodman, C., Farouq, D., Haas, B. J., Tickle, T. L., Trombetta, J. J., Baral, P., Klose, C., Mahlakõiv, T., Artis, D., Rozenblatt-Rosen, O., Chiu, I. M., Levy, B. D., … Kuchroo, V. K. (2017). The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature, 549(7672), 351-356. https://doi.org/10.1038/nature24029
Löser, S., & Maizels, R. M. (2018). Immunology: The Neuronal Pathway to Mucosal Immunity. Current Biology, 28(1), R33-R36. https://doi.org/10.1016/j.cub.2017.11.025
Popko, S. S. (2021). Morphological rearrangement of the metabolic link of the microcirculatory bed of guinea pigs lungs after sensitization with ovalbumin. Current issues in pharmacy and medicine: science and practice, 14(1), 79-83. https://doi.org/10.14739/2409-2932.2021.1.226851
Dey, P. (2018). Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8252-8
Adner, M., Canning, B. J., Meurs, H., Ford, W., Ramos Ramírez, P., van den Berg, M., Birrell, M. A., Stoffels, E., Lundblad, L., Nilsson, G. P., Olsson, H. K., Belvisi, M. G., & Dahlén, S. E. (2020). Back to the future: re-establishing guinea pig in vivo asthma models. Clinical Science, 134(11), 1219-1242. https://doi.org/10.1042/CS20200394
Messaritakis, I., Stoltidis, D., Kotsakis, A., Dermitzaki, E. K., Koinis, F., Lagoudaki, E., Koutsopoulos, A., Politaki, E., Apostolaki, S., Souglakos, J., & Georgoulias, V. (2017). TTF-1- and/or CD56-positive Circulating Tumor Cells in patients with small cell lung cancer (SCLC). Scientific Reports, 7, Article 45351. https://doi.org/10.1038/srep45351
Yatabe, Y., Dacic, S., Borczuk, A. C., Warth, A., Russell, P. A., Lantuejoul, S., Beasley, M. B., Thunnissen, E., Pelosi, G., Rekhtman, N., Bubendorf, L., Mino-Kenudson, M., Yoshida, A., Geisinger, K. R., Noguchi, M., Chirieac, L. R., Bolting, J., Chung, J. H., Chou, T. Y., Chen, G., … Moreira, A. L. (2019). Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. Journal of Thoracic Oncology, 14(3), 377-407. https://doi.org/10.1016/j.jtho.2018.12.005
Ueda, K., Ueda, A., & Ozaki, K. (2019). A case of a malignant peripheral nerve sheath tumor in a guinea pig. Journal of Veterinary Medical Science, 81(12), 1859-1862. https://doi.org/10.1292/jvms.19-0464
Rooper, L. M., Bishop, J. A., & Westra, W. H. (2018). INSM1 is a Sensitive and Specific Marker of Neuroendocrine Differentiation in Head and Neck Tumors. The American Journal of Surgical Pathology, 42(5), 665-671. https://doi.org/10.1097/PAS.0000000000001037
Rooper, L. M., Sharma, R., Li, Q. K., Illei, P. B., & Westra, W. H. (2017). INSM1 Demonstrates Superior Performance to the Individual and Combined Use of Synaptophysin, Chromogranin and CD56 for Diagnosing Neuroendocrine Tumors of the Thoracic Cavity. The American Journal of Surgical Pathology, 41(11), 1561-1569. https://doi.org/10.1097/PAS.0000000000000916
Sakakibara, R., Kobayashi, M., Takahashi, N., Inamura, K., Ninomiya, H., Wakejima, R., Kitazono, S., Yanagitani, N., Horiike, A., Ichinose, J., Matsuura, Y., Nakao, M., Mun, M., Nishio, M., Okumura, S., Motoi, N., Ito, T., Miyazaki, Y., Inase, N., & Ishikawa, Y. (2020). Insulinoma-associated Protein 1 (INSM1) Is a Better Marker for the Diagnosis and Prognosis Estimation of Small Cell Lung Carcinoma Than Neuroendocrine Phenotype Markers Such as Chromogranin A, Synaptophysin, and CD56. The American Journal of Surgical Pathology, 44(6), 757-764. https://doi.org/10.1097/PAS.0000000000001444
Kriegsmann, K., Zgorzelski, C., Muley, T., Christopoulos, P., Thomas, M., Winter, H., Eichhorn, M., Eichhorn, F., von Winterfeld, M., Herpel, E., Goeppert, B., Stenzinger, A., Herth, F., Warth, A., & Kriegsmann, M. (2021). Role of Synaptophysin, Chromogranin and CD56 in adenocarcinoma and squamous cell carcinoma of the lung lacking morphological features of neuroendocrine differentiation: a retrospective large-scale study on 1170 tissue samples. BMC Cancer, 21(1), Article 486. https://doi.org/10.1186/s12885-021-08140-9
Anguille, S., Van Acker, H. H., Van den Bergh, J., Willemen, Y., Goossens, H., Van Tendeloo, V. F., Smits, E. L., Berneman, Z. N., & Lion, E. (2015). Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLOS ONE, 10(5), Article e0123340. https://doi.org/10.1371/journal.pone.0123340
Jiao, Y., Huntington, N. D., Belz, G. T., & Seillet, C. (2016). Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells. Frontiers in Immunology, 7, Article 426. https://doi.org/10.3389/fimmu.2016.00426
Gunesch, J. T., Dixon, A. L., Ebrahim, T. A., Berrien-Elliott, M. M., Tatineni, S., Kumar, T., Hegewisch-Solloa, E., Fehniger, T. A., & Mace, E. M. (2020). CD56 regulates human NK cell cytotoxicity through Pyk2. eLife, 9, Article e57346. https://doi.org/10.7554/eLife.57346
Chen, L., Youssef, Y., Robinson, C., Ernst, G. F., Carson, M. Y., Young, K. A., Scoville, S. D., Zhang, X., Harris, R., Sekhri, P., Mansour, A. G., Chan, W. K., Nalin, A. P., Mao, H. C., Hughes, T., Mace, E. M., Pan, Y., Rustagi, N., Chatterjee, S. S., Gunaratne, P. H., … Freud, A. G. (2018). CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)