Мікробіом кишечника як таргетний орган під час діагностики та лікування нервово-психічних розладів і захворювань (огляд літератури)

Автор(и)

  • В. В. Мінухін ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків, Ukraine https://orcid.org/0000-0002-9682-9686
  • О. В. Книш ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків, Ukraine https://orcid.org/0000-0002-4105-1299
  • Л. А. Ждамарова ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків, Ukraine https://orcid.org/0000-0001-8792-1918
  • Г. М. Большакова ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків, Ukraine https://orcid.org/0000-0002-1151-0562
  • Ю. В. Войда ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків, Ukraine https://orcid.org/0000-0003-2003-4040

DOI:

https://doi.org/10.14739/2310-1210.2022.1.236932

Ключові слова:

вісь кишечник – мозок, кишкова мікробіота, дисбіоз, нейрозапалення, психобіотики, фекальна трансплантація, нейроактивні мікробні метаболіти

Анотація

Мета роботи – аналіз відомостей фахової літератури, що стосуються дослідження зв’язку між змінами складу, метаболічної активності кишкової мікробіоти та розвитком психоневрологічних розладів, захворювань.

Результати. Незважаючи на різний етіопатогенез, клінічні прояви, нервово-психічні розлади і захворювання мають спільні патогенетичні ланки: кишковий дисбіоз зі збідненням мікробного різноманіття, збільшенням представництва «прозапальних» таксонів і зміною метаболізму кишкової мікробіоти; порушення мукозального бар’єра та збільшення проникності стінки кишечника; активація імунної відповіді з розвитком системного запалення та нейрозапалення; порушення нервових, ендокринних, метаболічних механізмів передачі сигналів у межах осі кишечник – мозок. Специфічні зміни складу, метаболічної активності кишкової мікробіоти – біомаркери або додаткові діагностичні критерії при деяких психоневрологічних захворюваннях. Позитивний ефект мають терапевтичні підходи, що спрямовані на корекцію складу й метаболічної активності мікробіоти кишечника, – фекальна трансплантація, застосування психобіотиків і нейроактивних похідних пробіотичних бактерій.

Висновки. Механізми впливу конкретних мікроорганізмів та їхніх дериватів на функціональну активність ЦНС потребують продовження вивчення. Мікробіом кишечника потрібно розглядати як таргетний орган під час діагностики, терапії нервово-психічних розладів і захворювань. Мікробіомний підхід сприяє ранній діагностиці та прогнозуванню тяжкості їхнього перебігу. Спрямування на корекцію складу та функціональної активності кишкової мікробіоти – перспективна стратегія підвищення ефективності лікування психоневрологічної патології.

Біографії авторів

В. В. Мінухін, ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків

д-р мед. наук, професор, директор

О. В. Книш, ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків

д-р мед. наук, наук, старший дослідник, провідний науковий співробітник лабораторії та клінічного відділу імунофармакології

Л. А. Ждамарова, ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків

канд. мед. наук, провідний науковий співробітник лабораторії профілактики краплинних інфекцій

Г. М. Большакова, ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків

канд. мед. наук, доцент, старший науковий співробітник лабораторії загальної мікробіології з музеєм мікроорганізмів

Ю. В. Войда, ДУ «Інститут мікробіології та імунології імені І. І. Мечникова НАМН України», м. Харків

канд. біол. наук, доцент, науковий співробітник лабораторії протимікробних засобів

Посилання

Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124-136. https://doi.org/10.1016/j.ynstr.2017.03.001

Giuffrè, M., Moretti, R., Campisciano, G., da Silveira, A., Monda, V. M., Comar, M., Di Bella, S., Antonello, R. M., Luzzati, R., & Crocè, L. S. (2020). You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. Journal of Clinical Medicine, 9(11), Article 3705. https://doi.org/10.3390/jcm9113705

Jang, S. H., Woo, Y. S., Lee, S. Y., & Bahk, W. M. (2020). The Brain-Gut-Microbiome Axis in Psychiatry. International Journal of Molecular Sciences, 21(19), Article 7122. https://doi.org/10.3390/ijms21197122

Ma, Q., Xing, C., Long, W., Wang, H. Y., Liu, Q., & Wang, R. F. (2019). Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 16(1), Article 53. https://doi.org/10.1186/s12974-019-1434-3

Martin, C. R., Osadchiy, V., Kalani, A., & Mayer, E. A. (2018). The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 6(2), 133-148. https://doi.org/10.1016/j.jcmgh.2018.04.003

Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The Central Nervous System and the Gut Microbiome. Cell, 167(4), 915-932. https://doi.org/10.1016/j.cell.2016.10.027

Zhu, F., Li, C., Chu, F., Tian, X., & Zhu, J. (2020). Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 12, Article 544235. https://doi.org/10.3389/fnagi.2020.544235

Cussotto, S., Sandhu, K. V., Dinan, T. G., & Cryan, J. F. (2018). The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 51, 80-101. https://doi.org/10.1016/j.yfrne.2018.04.002

Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of Physiology, 595(2), 489-503. https://doi.org/10.1113/JP273106

Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G., & Dinan, T. G. (2017). Cross Talk: The Microbiota and Neurodevelopmental Disorders. Frontiers in Neuroscience, 11, Article 490. https://doi.org/10.3389/fnins.2017.00490

Matcovitch-Natan, O., Winter, D. R., Giladi, A., Vargas Aguilar, S., Spinrad, A., Sarrazin, S., Ben-Yehuda, H., David, E., Zelada González, F., Perrin, P., Keren-Shaul, H., Gury, M., Lara-Astaiso, D., Thaiss, C. A., Cohen, M., Bahar Halpern, K., Baruch, K., Deczkowska, A., Lorenzo-Vivas, E., Itzkovitz, S., … Amit, I. (2016). Microglia development follows a stepwise program to regulate brain homeostasis. Science, 353(6301), Article aad8670. https://doi.org/10.1126/science.aad8670

Thion, M. S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., Blecher, R., Ulas, T., Squarzoni, P., Hoeffel, G., Coulpier, F., Siopi, E., David, F. S., Scholz, C., Shihui, F., Lum, J., Amoyo, A. A., Larbi, A., Poidinger, M., Buttgereit, A., … Garel, S. (2018). Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell, 172(3), 500-516.e16. https://doi.org/10.1016/j.cell.2017.11.042

Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B., & Waubant, E. (2017). The gut microbiome in human neurological disease: A review. Annals of Neurology, 81(3), 369-382. https://doi.org/10.1002/ana.24901

Zhang, J., Yu, C., Zhang, X., Chen, H., Dong, J., Lu, W., Song, Z., & Zhou, W. (2018). Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. Journal of Neuroinflammation, 15(1), Article 37. https://doi.org/10.1186/s12974-017-1052-x

Feng, Q., Chen, W. D., & Wang, Y. D. (2018). Gut Microbiota: An Integral Moderator in Health and Disease. Frontiers in Microbiology, 9, Article 151. https://doi.org/10.3389/fmicb.2018.00151

Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145-155. https://doi.org/10.1038/nn.4476

Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V., Cancello, R., Ceccarani, C., Faierman, S., Pinelli, G., De Bellis, G., Zecca, L., Cereda, E., Consolandi, C., & Pezzoli, G. (2019). Unraveling gut microbiota in Parkinson's disease and atypical parkinsonism. Movement Disorders, 34(3), 396-405. https://doi.org/10.1002/mds.27581

Bedarf, J. R., Hildebrand, F., Goeser, F., Bork, P., & Wüllner, U. (2019). Das Darmmikrobiom bei der Parkinson-Krankheit. Der Nervenarzt, 90(2), 160-166. https://doi.org/10.1007/s00115-018-0601-6

Carlessi, A. S., Borba, L. A., Zugno, A. I., Quevedo, J., & Réus, G. Z. (2021). Gut microbiota-brain axis in depression: The role of neuroinflammation. European Journal of Neuroscience, 53(1), 222-235. https://doi.org/10.1111/ejn.14631

Kirby, T. O., & Ochoa-Repáraz, J. (2018). The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Medical Sciences, 6(3), Article 69. https://doi.org/10.3390/medsci6030069

Pulikkan, J., Mazumder, A., & Grace, T. (2019). Role of the Gut Microbiome in Autism Spectrum Disorders. In P. Guest (Ed.), Advances in Experimental Medicine and Biology: Vol. 1118. Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders (pp. 253-269). Springer, Cham. https://doi.org/10.1007/978-3-030-05542-4_13

Winek, K., Dirnagl, U., & Meisel, A. (2016). The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics, 13(4), 762-774. https://doi.org/10.1007/s13311-016-0475-x

Jang, H. M., Lee, H. J., Jang, S. E., Han, M. J., & Kim, D. H. (2018). Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunology, 11(5), 1386-1397. https://doi.org/10.1038/s41385-018-0042-3

Karakan, T., Ozkul, C., Küpeli Akkol, E., Bilici, S., Sobarzo-Sánchez, E., & Capasso, R. (2021). Gut-Brain-Microbiota Axis: Antibiotics and Functional Gastrointestinal Disorders. Nutrients, 13(2), Article 389. https://doi.org/10.3390/nu13020389

Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254-257. https://doi.org/10.1016/j.jad.2016.05.038

Cryan, J. F., O'Riordan, K. J., Cowan, C., Sandhu, K. V., Bastiaanssen, T., Boehme, M., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E., O'Connor, R., … Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiological Reviews, 99(4), 1877-2013. https://doi.org/10.1152/physrev.00018.2018

Fattorusso, A., Di Genova, L., Dell'Isola, G. B., Mencaroni, E., & Esposito, S. (2019). Autism Spectrum Disorders and the Gut Microbiota. Nutrients, 11(3), Article 521. https://doi.org/10.3390/nu11030521

Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., Jousson, O., Leoncini, S., Renzi, D., Calabrò, A., & De Filippo, C. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 5(1), Article 24. https://doi.org/10.1186/s40168-017-0242-1

Kushak, R. I., Winter, H. S., Buie, T. M., Cox, S. B., Phillips, C. D., & Ward, N. L. (2017). Analysis of the Duodenal Microbiome in Autistic Individuals: Association With Carbohydrate Digestion. Journal of Pediatric Gastroenterology and Nutrition, 64(5), e110-e116. https://doi.org/10.1097/MPG.0000000000001458

Shaik, L., Kashyap, R., Thotamgari, S. R., Singh, R., & Khanna, S. (2020). Gut-Brain Axis and its Neuro-Psychiatric Effects: A Narrative Review. Cureus, 12(10), Article e11131. https://doi.org/10.7759/cureus.11131

Ming, X., Chen, N., Ray, C., Brewer, G., Kornitzer, J., & Steer, R. A. (2018). A Gut Feeling: A Hypothesis of the Role of the Microbiome in Attention-Deficit/Hyperactivity Disorders. Child Neurology Open, 5, Article 2329048X18786799. https://doi.org/10.1177/2329048X18786799

Lee, W. T., & Wong, L. C. (2018). Alterations of the intestinal microbiota were correlated with the severity of Tourette syndrome in children. Movement Disorders, 33(Suppl. 2). https://www.mdsabstracts.org/abstract/alterations-of-the-intestinal-microbiota-were-correlated-with-the-severity-of-tourette-syndrome-in-children/

Quagliariello, A., Del Chierico, F., Russo, A., Reddel, S., Conte, G., Lopetuso, L. R., Ianiro, G., Dallapiccola, B., Cardona, F., Gasbarrini, A., & Putignani, L. (2018). Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Frontiers in Microbiology, 9, Article 675. https://doi.org/10.3389/fmicb.2018.00675

Cekanaviciute, E., Yoo, B. B., Runia, T. F., Debelius, J. W., Singh, S., Nelson, C. A., Kanner, R., Bencosme, Y., Lee, Y. K., Hauser, S. L., Crabtree-Hartman, E., Sand, I. K., Gacias, M., Zhu, Y., Casaccia, P., Cree, B., Knight, R., Mazmanian, S. K., & Baranzini, S. E. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10713-10718. https://doi.org/10.1073/pnas.1711235114

Berer, K., Gerdes, L. A., Cekanaviciute, E., Jia, X., Xiao, L., Xia, Z., Liu, C., Klotz, L., Stauffer, U., Baranzini, S. E., Kümpfel, T., Hohlfeld, R., Krishnamoorthy, G., & Wekerle, H. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10719-10724. https://doi.org/10.1073/pnas.1711233114

Tremlett, H., & Waubant, E. (2018). Gut microbiome and pediatric multiple sclerosis. Multiple Sclerosis, 24(1), 64-68. https://doi.org/10.1177/1352458517737369

Ekundayo, T. C., Olasehinde, T. A., Okaiyeto, K., & Okoh, A. I. (2021). Microbial Pathogenesis and Pathophysiology of Alzheimer's Disease: A Systematic Assessment of Microorganisms' Implications in the Neurodegenerative Disease. Frontiers in Neuroscience, 15, Article 648484. https://doi.org/10.3389/fnins.2021.648484

Vogt, N. M., Romano, K. A., Darst, B. F., Engelman, C. D., Johnson, S. C., Carlsson, C. M., Asthana, S., Blennow, K., Zetterberg, H., Bendlin, B. B., & Rey, F. E. (2018). The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer's disease. Alzheimer's Research & Therapy, 10(1), Article 124. https://doi.org/10.1186/s13195-018-0451-2

Zhang, L., Wang, Y., Xiayu, X., Shi, C., Chen, W., Song, N., Fu, X., Zhou, R., Xu, Y. F., Huang, L., Zhu, H., Han, Y., & Qin, C. (2017). Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 60(4), 1241-1257. https://doi.org/10.3233/JAD-170020

Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R., Wallen, Z. D., Peddada, S. D., Factor, S. A., Molho, E., Zabetian, C. P., Knight, R., & Payami, H. (2017). Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders, 32(5), 739-749. https://doi.org/10.1002/mds.26942

Bhattarai, Y., & Kashyap, P. C. (2020). Parkinson's disease: Are gut microbes involved? American Journal of Physiology-Gastrointestinal and Liver Physiology, 319(5), G529-G540. https://doi.org/10.1152/ajpgi.00058.2020

Szeligowski, T., Yun, A. L., Lennox, B. R., & Burnet, P. (2020). The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications. Frontiers in Psychiatry, 11, Article 156. https://doi.org/10.3389/fpsyt.2020.00156

Shen, Y., Xu, J., Li, Z., Huang, Y., Yuan, Y., Wang, J., Zhang, M., Hu, S., & Liang, Y. (2018). Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophrenia Research, 197, 470-477. https://doi.org/10.1016/j.schres.2018.01.002

Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., Liu, Y., Cheng, K., Zhou, C., Wang, H., Zhou, X., Gui, S., Perry, S. W., Wong, M. L., Licinio, J., Wei, H., & Xie, P. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), Article eaau8317. https://doi.org/10.1126/sciadv.aau8317

Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

He, Z., Cui, B. T., Zhang, T., Li, P., Long, C. Y., Ji, G. Z., & Zhang, F. M. (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: The first report. World Journal of Gastroenterology, 23(19), 3565-3568. https://doi.org/10.3748/wjg.v23.i19.3565

Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., Khoruts, A., Geis, E., Maldonado, J., McDonough-Means, S., Pollard, E. L., Roux, S., Sadowsky, M. J., Lipson, K. S., Sullivan, M. B., Caporaso, J. G., & Krajmalnik-Brown, R. (2017). Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 5(1), Article 10. https://doi.org/10.1186/s40168-016-0225-7

Zhao, H., Shi, Y., Luo, X., Peng, L., Yang, Y., & Zou, L. (2017). The Effect of Fecal Microbiota Transplantation on a Child with Tourette Syndrome. Case Reports in Medicine, 2017, Article 6165239. https://doi.org/10.1155/2017/6165239

Möhle, L., Mattei, D., Heimesaat, M. M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, I. R., & Wolf, S. A. (2016). Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Reports, 15(9), 1945-1956. https://doi.org/10.1016/j.celrep.2016.04.074

Magalhães-Guedes, K. T., do Nascimento, A. S. M., da Anunciação, T. A., & Soares, S. E. (2020). Psychobiotics in daily food against psychiatric disorders. African Journal of Food Science, 14(6), 161-166. https://doi.org/10.5897/ajfs2020.1927

Allen, A. P., Hutch, W., Borre, Y. E., Kennedy, P. J., Temko, A., Boylan, G., Murphy, E., Cryan, J. F., Dinan, T. G., & Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry, 6(11), Article e939. https://doi.org/10.1038/tp.2016.191

Wallace, C., & Milev, R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. Annals of General Psychiatry, 16, Article 14. https://doi.org/10.1186/s12991-017-0138-2

Cheng, L. H., Liu, Y. W., Wu, C. C., Wang, S., & Tsai, Y. C. (2019). Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. Journal of Food and Drug Analysis, 27(3), 632-648. https://doi.org/10.1016/j.jfda.2019.01.002

Tankou, S. K., Regev, K., Healy, B. C., Cox, L. M., Tjon, E., Kivisakk, P., Vanande, I. P., Cook, S., Gandhi, R., Glanz, B., Stankiewicz, J., & Weiner, H. L. (2018). Investigation of probiotics in multiple sclerosis. Multiple Sclerosis, 24(1), 58-63. https://doi.org/10.1177/1352458517737390

Singh, A., Vishwakarma, V., & Singhal, B. (2018). Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities - Metabiotics: Probiotics Effector Molecules. Advances in Bioscience and Biotechnology, 9(4), 147-189. https://doi.org/10.4236/abb.2018.94012

Tamtaji, O. R., Taghizadeh, M., Daneshvar Kakhaki, R., Kouchaki, E., Bahmani, F., Borzabadi, S., Oryan, S., Mafi, A., & Asemi, Z. (2019). Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clinical Nutrition, 38(3), 1031-1035. https://doi.org/10.1016/j.clnu.2018.05.018

Kaur, H., Bose, C., & Mande, S. S. (2019). Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Frontiers in Neuroscience, 13, Article 1365. https://doi.org/10.3389/fnins.2019.01365

Cervantes-Barragan, L., Chai, J. N., Tianero, M. D., Di Luccia, B., Ahern, P. P., Merriman, J., Cortez, V. S., Caparon, M. G., Donia, M. S., Gilfillan, S., Cella, M., Gordon, J. I., Hsieh, C. S., & Colonna, M. (2017). Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science, 357(6353), 806-810. https://doi.org/10.1126/science.aah5825

Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135-157. https://doi.org/10.1080/19490976.2019.1638722

Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., & McArthur, S. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6(1), Article 55. https://doi.org/10.1186/s40168-018-0439-y

Park, J., Wang, Q., Wu, Q., Mao-Draayer, Y., & Kim, C. H. (2019). Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 9(1), Article 8837. https://doi.org/10.1038/s41598-019-45311-y

Unger, M. M., Spiegel, J., Dillmann, K. U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., & Schäfer, K. H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism & Related Disorders, 32, 66-72. https://doi.org/10.1016/j.parkreldis.2016.08.019

##submission.downloads##

Опубліковано

2022-01-26

Номер

Розділ

Огляд