Gut microbiome as a target organ in diagnosis and treatment of neuropsychiatric disorders and diseases (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2022.1.236932Keywords:
gut-brain axis, gut microbiota, dysbiosis, neuroinflammation, psychobiotics, fecal transplantation, neuroactive microbial metabolitesAbstract
The aim: analysis of literature data concerning the study on the relationship between changes in the composition, metabolic activity of the intestinal microbiota and the development of neuropsychiatric disorders and diseases.
Results. Despite the different etiopathogenesis and clinical manifestations, neuropsychiatric disorders and diseases share common pathogenetic links: intestinal dysbiosis with depletion of microbial diversity, an increase in the representation of “pro-inflammatory” taxa and changes in the metabolism of the intestinal microbiota; damage of the mucosal barrier and increased permeability of the intestinal wall; immune response activation with the development of systemic inflammation and neuroinflammation; impairment of the nervous, endocrine and metabolic mechanisms of signal transmission within the gut-brain axis. Specific changes in the composition and metabolic activity of the intestinal microbiota act as biomarkers or additional diagnostic criteria at some neuropsychiatric diseases. Therapeutic approaches aimed at correcting the composition and metabolic activity of the intestinal microbiota: fecal transplantation, the use of psychobiotics and neuroactive derivatives of probiotic bacteria demonstrate a positive effect.
Conclusions. The mechanisms of the specific microorganisms and their derivatives for influencing the functional activity of the central nervous system require further study. The gut microbiome should be considered as a target organ in the diagnosis and treatment of neuropsychiatric disorders and diseases. The microbiome-based approach contributes to early diagnosis and prediction of the clinical course severity. Targeting the correction of the intestinal microbiota composition and functional activity is a promising strategy for increasing the effectiveness of the neuropsychiatric pathology treatment.
References
Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124-136. https://doi.org/10.1016/j.ynstr.2017.03.001
Giuffrè, M., Moretti, R., Campisciano, G., da Silveira, A., Monda, V. M., Comar, M., Di Bella, S., Antonello, R. M., Luzzati, R., & Crocè, L. S. (2020). You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. Journal of Clinical Medicine, 9(11), Article 3705. https://doi.org/10.3390/jcm9113705
Jang, S. H., Woo, Y. S., Lee, S. Y., & Bahk, W. M. (2020). The Brain-Gut-Microbiome Axis in Psychiatry. International Journal of Molecular Sciences, 21(19), Article 7122. https://doi.org/10.3390/ijms21197122
Ma, Q., Xing, C., Long, W., Wang, H. Y., Liu, Q., & Wang, R. F. (2019). Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 16(1), Article 53. https://doi.org/10.1186/s12974-019-1434-3
Martin, C. R., Osadchiy, V., Kalani, A., & Mayer, E. A. (2018). The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 6(2), 133-148. https://doi.org/10.1016/j.jcmgh.2018.04.003
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The Central Nervous System and the Gut Microbiome. Cell, 167(4), 915-932. https://doi.org/10.1016/j.cell.2016.10.027
Zhu, F., Li, C., Chu, F., Tian, X., & Zhu, J. (2020). Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 12, Article 544235. https://doi.org/10.3389/fnagi.2020.544235
Cussotto, S., Sandhu, K. V., Dinan, T. G., & Cryan, J. F. (2018). The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 51, 80-101. https://doi.org/10.1016/j.yfrne.2018.04.002
Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. The Journal of Physiology, 595(2), 489-503. https://doi.org/10.1113/JP273106
Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G., & Dinan, T. G. (2017). Cross Talk: The Microbiota and Neurodevelopmental Disorders. Frontiers in Neuroscience, 11, Article 490. https://doi.org/10.3389/fnins.2017.00490
Matcovitch-Natan, O., Winter, D. R., Giladi, A., Vargas Aguilar, S., Spinrad, A., Sarrazin, S., Ben-Yehuda, H., David, E., Zelada González, F., Perrin, P., Keren-Shaul, H., Gury, M., Lara-Astaiso, D., Thaiss, C. A., Cohen, M., Bahar Halpern, K., Baruch, K., Deczkowska, A., Lorenzo-Vivas, E., Itzkovitz, S., … Amit, I. (2016). Microglia development follows a stepwise program to regulate brain homeostasis. Science, 353(6301), Article aad8670. https://doi.org/10.1126/science.aad8670
Thion, M. S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., Blecher, R., Ulas, T., Squarzoni, P., Hoeffel, G., Coulpier, F., Siopi, E., David, F. S., Scholz, C., Shihui, F., Lum, J., Amoyo, A. A., Larbi, A., Poidinger, M., Buttgereit, A., … Garel, S. (2018). Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell, 172(3), 500-516.e16. https://doi.org/10.1016/j.cell.2017.11.042
Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B., & Waubant, E. (2017). The gut microbiome in human neurological disease: A review. Annals of Neurology, 81(3), 369-382. https://doi.org/10.1002/ana.24901
Zhang, J., Yu, C., Zhang, X., Chen, H., Dong, J., Lu, W., Song, Z., & Zhou, W. (2018). Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. Journal of Neuroinflammation, 15(1), Article 37. https://doi.org/10.1186/s12974-017-1052-x
Feng, Q., Chen, W. D., & Wang, Y. D. (2018). Gut Microbiota: An Integral Moderator in Health and Disease. Frontiers in Microbiology, 9, Article 151. https://doi.org/10.3389/fmicb.2018.00151
Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145-155. https://doi.org/10.1038/nn.4476
Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V., Cancello, R., Ceccarani, C., Faierman, S., Pinelli, G., De Bellis, G., Zecca, L., Cereda, E., Consolandi, C., & Pezzoli, G. (2019). Unraveling gut microbiota in Parkinson's disease and atypical parkinsonism. Movement Disorders, 34(3), 396-405. https://doi.org/10.1002/mds.27581
Bedarf, J. R., Hildebrand, F., Goeser, F., Bork, P., & Wüllner, U. (2019). Das Darmmikrobiom bei der Parkinson-Krankheit. Der Nervenarzt, 90(2), 160-166. https://doi.org/10.1007/s00115-018-0601-6
Carlessi, A. S., Borba, L. A., Zugno, A. I., Quevedo, J., & Réus, G. Z. (2021). Gut microbiota-brain axis in depression: The role of neuroinflammation. European Journal of Neuroscience, 53(1), 222-235. https://doi.org/10.1111/ejn.14631
Kirby, T. O., & Ochoa-Repáraz, J. (2018). The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Medical Sciences, 6(3), Article 69. https://doi.org/10.3390/medsci6030069
Pulikkan, J., Mazumder, A., & Grace, T. (2019). Role of the Gut Microbiome in Autism Spectrum Disorders. In P. Guest (Ed.), Advances in Experimental Medicine and Biology: Vol. 1118. Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders (pp. 253-269). Springer, Cham. https://doi.org/10.1007/978-3-030-05542-4_13
Winek, K., Dirnagl, U., & Meisel, A. (2016). The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics, 13(4), 762-774. https://doi.org/10.1007/s13311-016-0475-x
Jang, H. M., Lee, H. J., Jang, S. E., Han, M. J., & Kim, D. H. (2018). Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunology, 11(5), 1386-1397. https://doi.org/10.1038/s41385-018-0042-3
Karakan, T., Ozkul, C., Küpeli Akkol, E., Bilici, S., Sobarzo-Sánchez, E., & Capasso, R. (2021). Gut-Brain-Microbiota Axis: Antibiotics and Functional Gastrointestinal Disorders. Nutrients, 13(2), Article 389. https://doi.org/10.3390/nu13020389
Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., Ota, M., Koga, N., Hattori, K., & Kunugi, H. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 202, 254-257. https://doi.org/10.1016/j.jad.2016.05.038
Cryan, J. F., O'Riordan, K. J., Cowan, C., Sandhu, K. V., Bastiaanssen, T., Boehme, M., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E., O'Connor, R., … Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiological Reviews, 99(4), 1877-2013. https://doi.org/10.1152/physrev.00018.2018
Fattorusso, A., Di Genova, L., Dell'Isola, G. B., Mencaroni, E., & Esposito, S. (2019). Autism Spectrum Disorders and the Gut Microbiota. Nutrients, 11(3), Article 521. https://doi.org/10.3390/nu11030521
Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., Jousson, O., Leoncini, S., Renzi, D., Calabrò, A., & De Filippo, C. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 5(1), Article 24. https://doi.org/10.1186/s40168-017-0242-1
Kushak, R. I., Winter, H. S., Buie, T. M., Cox, S. B., Phillips, C. D., & Ward, N. L. (2017). Analysis of the Duodenal Microbiome in Autistic Individuals: Association With Carbohydrate Digestion. Journal of Pediatric Gastroenterology and Nutrition, 64(5), e110-e116. https://doi.org/10.1097/MPG.0000000000001458
Shaik, L., Kashyap, R., Thotamgari, S. R., Singh, R., & Khanna, S. (2020). Gut-Brain Axis and its Neuro-Psychiatric Effects: A Narrative Review. Cureus, 12(10), Article e11131. https://doi.org/10.7759/cureus.11131
Ming, X., Chen, N., Ray, C., Brewer, G., Kornitzer, J., & Steer, R. A. (2018). A Gut Feeling: A Hypothesis of the Role of the Microbiome in Attention-Deficit/Hyperactivity Disorders. Child Neurology Open, 5, Article 2329048X18786799. https://doi.org/10.1177/2329048X18786799
Lee, W. T., & Wong, L. C. (2018). Alterations of the intestinal microbiota were correlated with the severity of Tourette syndrome in children. Movement Disorders, 33(Suppl. 2). https://www.mdsabstracts.org/abstract/alterations-of-the-intestinal-microbiota-were-correlated-with-the-severity-of-tourette-syndrome-in-children/
Quagliariello, A., Del Chierico, F., Russo, A., Reddel, S., Conte, G., Lopetuso, L. R., Ianiro, G., Dallapiccola, B., Cardona, F., Gasbarrini, A., & Putignani, L. (2018). Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Frontiers in Microbiology, 9, Article 675. https://doi.org/10.3389/fmicb.2018.00675
Cekanaviciute, E., Yoo, B. B., Runia, T. F., Debelius, J. W., Singh, S., Nelson, C. A., Kanner, R., Bencosme, Y., Lee, Y. K., Hauser, S. L., Crabtree-Hartman, E., Sand, I. K., Gacias, M., Zhu, Y., Casaccia, P., Cree, B., Knight, R., Mazmanian, S. K., & Baranzini, S. E. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10713-10718. https://doi.org/10.1073/pnas.1711235114
Berer, K., Gerdes, L. A., Cekanaviciute, E., Jia, X., Xiao, L., Xia, Z., Liu, C., Klotz, L., Stauffer, U., Baranzini, S. E., Kümpfel, T., Hohlfeld, R., Krishnamoorthy, G., & Wekerle, H. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10719-10724. https://doi.org/10.1073/pnas.1711233114
Tremlett, H., & Waubant, E. (2018). Gut microbiome and pediatric multiple sclerosis. Multiple Sclerosis, 24(1), 64-68. https://doi.org/10.1177/1352458517737369
Ekundayo, T. C., Olasehinde, T. A., Okaiyeto, K., & Okoh, A. I. (2021). Microbial Pathogenesis and Pathophysiology of Alzheimer's Disease: A Systematic Assessment of Microorganisms' Implications in the Neurodegenerative Disease. Frontiers in Neuroscience, 15, Article 648484. https://doi.org/10.3389/fnins.2021.648484
Vogt, N. M., Romano, K. A., Darst, B. F., Engelman, C. D., Johnson, S. C., Carlsson, C. M., Asthana, S., Blennow, K., Zetterberg, H., Bendlin, B. B., & Rey, F. E. (2018). The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer's disease. Alzheimer's Research & Therapy, 10(1), Article 124. https://doi.org/10.1186/s13195-018-0451-2
Zhang, L., Wang, Y., Xiayu, X., Shi, C., Chen, W., Song, N., Fu, X., Zhou, R., Xu, Y. F., Huang, L., Zhu, H., Han, Y., & Qin, C. (2017). Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 60(4), 1241-1257. https://doi.org/10.3233/JAD-170020
Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R., Wallen, Z. D., Peddada, S. D., Factor, S. A., Molho, E., Zabetian, C. P., Knight, R., & Payami, H. (2017). Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders, 32(5), 739-749. https://doi.org/10.1002/mds.26942
Bhattarai, Y., & Kashyap, P. C. (2020). Parkinson's disease: Are gut microbes involved? American Journal of Physiology-Gastrointestinal and Liver Physiology, 319(5), G529-G540. https://doi.org/10.1152/ajpgi.00058.2020
Szeligowski, T., Yun, A. L., Lennox, B. R., & Burnet, P. (2020). The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications. Frontiers in Psychiatry, 11, Article 156. https://doi.org/10.3389/fpsyt.2020.00156
Shen, Y., Xu, J., Li, Z., Huang, Y., Yuan, Y., Wang, J., Zhang, M., Hu, S., & Liang, Y. (2018). Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophrenia Research, 197, 470-477. https://doi.org/10.1016/j.schres.2018.01.002
Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., Liu, Y., Cheng, K., Zhou, C., Wang, H., Zhou, X., Gui, S., Perry, S. W., Wong, M. L., Licinio, J., Wei, H., & Xie, P. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), Article eaau8317. https://doi.org/10.1126/sciadv.aau8317
Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 167(6), 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018
He, Z., Cui, B. T., Zhang, T., Li, P., Long, C. Y., Ji, G. Z., & Zhang, F. M. (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: The first report. World Journal of Gastroenterology, 23(19), 3565-3568. https://doi.org/10.3748/wjg.v23.i19.3565
Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., Khoruts, A., Geis, E., Maldonado, J., McDonough-Means, S., Pollard, E. L., Roux, S., Sadowsky, M. J., Lipson, K. S., Sullivan, M. B., Caporaso, J. G., & Krajmalnik-Brown, R. (2017). Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 5(1), Article 10. https://doi.org/10.1186/s40168-016-0225-7
Zhao, H., Shi, Y., Luo, X., Peng, L., Yang, Y., & Zou, L. (2017). The Effect of Fecal Microbiota Transplantation on a Child with Tourette Syndrome. Case Reports in Medicine, 2017, Article 6165239. https://doi.org/10.1155/2017/6165239
Möhle, L., Mattei, D., Heimesaat, M. M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, I. R., & Wolf, S. A. (2016). Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Reports, 15(9), 1945-1956. https://doi.org/10.1016/j.celrep.2016.04.074
Magalhães-Guedes, K. T., do Nascimento, A. S. M., da Anunciação, T. A., & Soares, S. E. (2020). Psychobiotics in daily food against psychiatric disorders. African Journal of Food Science, 14(6), 161-166. https://doi.org/10.5897/ajfs2020.1927
Allen, A. P., Hutch, W., Borre, Y. E., Kennedy, P. J., Temko, A., Boylan, G., Murphy, E., Cryan, J. F., Dinan, T. G., & Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry, 6(11), Article e939. https://doi.org/10.1038/tp.2016.191
Wallace, C., & Milev, R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. Annals of General Psychiatry, 16, Article 14. https://doi.org/10.1186/s12991-017-0138-2
Cheng, L. H., Liu, Y. W., Wu, C. C., Wang, S., & Tsai, Y. C. (2019). Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. Journal of Food and Drug Analysis, 27(3), 632-648. https://doi.org/10.1016/j.jfda.2019.01.002
Tankou, S. K., Regev, K., Healy, B. C., Cox, L. M., Tjon, E., Kivisakk, P., Vanande, I. P., Cook, S., Gandhi, R., Glanz, B., Stankiewicz, J., & Weiner, H. L. (2018). Investigation of probiotics in multiple sclerosis. Multiple Sclerosis, 24(1), 58-63. https://doi.org/10.1177/1352458517737390
Singh, A., Vishwakarma, V., & Singhal, B. (2018). Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities - Metabiotics: Probiotics Effector Molecules. Advances in Bioscience and Biotechnology, 9(4), 147-189. https://doi.org/10.4236/abb.2018.94012
Tamtaji, O. R., Taghizadeh, M., Daneshvar Kakhaki, R., Kouchaki, E., Bahmani, F., Borzabadi, S., Oryan, S., Mafi, A., & Asemi, Z. (2019). Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clinical Nutrition, 38(3), 1031-1035. https://doi.org/10.1016/j.clnu.2018.05.018
Kaur, H., Bose, C., & Mande, S. S. (2019). Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Frontiers in Neuroscience, 13, Article 1365. https://doi.org/10.3389/fnins.2019.01365
Cervantes-Barragan, L., Chai, J. N., Tianero, M. D., Di Luccia, B., Ahern, P. P., Merriman, J., Cortez, V. S., Caparon, M. G., Donia, M. S., Gilfillan, S., Cella, M., Gordon, J. I., Hsieh, C. S., & Colonna, M. (2017). Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science, 357(6353), 806-810. https://doi.org/10.1126/science.aah5825
Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135-157. https://doi.org/10.1080/19490976.2019.1638722
Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., & McArthur, S. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6(1), Article 55. https://doi.org/10.1186/s40168-018-0439-y
Park, J., Wang, Q., Wu, Q., Mao-Draayer, Y., & Kim, C. H. (2019). Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 9(1), Article 8837. https://doi.org/10.1038/s41598-019-45311-y
Unger, M. M., Spiegel, J., Dillmann, K. U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., & Schäfer, K. H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism & Related Disorders, 32, 66-72. https://doi.org/10.1016/j.parkreldis.2016.08.019
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)