Correlation between circulating microRNA and lipid indicesin patients with ischemic heart disease and type 2 diabetes mellitus

Authors

DOI:

https://doi.org/10.14739/2310-1210.2022.1.240300

Keywords:

coronary artery disease, type 2 diabetes mellitus, miсroRNA, cholesterol, triglycerides

Abstract

The aim of the study was to investigate circulating miRNAs-27a, -221 levels and their correlations with lipid indices in patients with ischemic heart disease (IHD) and type 2 diabetes mellitus.

Materials and methods. The study included 58 patients with stable IHD and type 2 diabetes mellitus, 22 IHD patients without diabetes and 19 healthy controls. MicroRNAs-27a-3р and 221-3р were determined in blood plasma by real time polymerase chain reaction. U6 small nuclear RNA was used for normalization.

Results. The lowest levels of circulating miRNAs-27a and -221 were in IHD patients with diabetes. The decrease in the levels of both microRNAs in patients with diabetes was significant not only in comparison with the control group (P = 0.024, P = 0.006), but also with patients without diabetes (P = 0.011, P = 0.001). In IHD patients without diabetes, microRNAs-27a and -221 levels did not change significantly. In IHD patients with diabetes, microRNA-221 showed a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) (R = 0.382, P = 0.003). MicroRNA-27a was correlated negatively with triglycerides (TG) (R = -0.284, P = 0.051) and positively – with HDL-C (R = 0.257, P = 0.078) at a borderline significance level. The lower level of microRNA-27a (the 1st tertile) was associated with significantly increased TG level in comparison with the 3rd tertile (P = 0.004), and significantly decreased HDL-C level in comparison with the 2nd (P = 0.001) and the 3rd (P = 0.023) tertiles. Patients with lower microRNA-221 level (the 1st tertile) had significantly reduced HDL-C level in comparison with the 3rd tertile(P = 0.007).

Conclusions. The results have demonstrated the significant decrease in circulating microRNAs-27a and -221 levels in IHD patients with type 2 diabetes mellitus and no change in both microRNAs in patients without diabetes. In IHD patients with diabetes, the lower expression of microRNA-27a was associated with the significant elevation of TG and the significant decrease in HDL-C. The lower microRNA-221 level was associated only with the significant decrease in HDL-C.

Author Biographies

S. A. Serik, GI “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

MD, PhD, DSc, Senior Researcher, Head of the Department of Ischemic Heart Disease and Metabolic Disorders

E. М. Serdobinska-Kanivets, GI “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

MD, PhD, Researcher, Department of Ischemic Heart Disease and Metabolic Disorders

T. М. Bondar, GI “L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv

PhD, Senior Researcher, Laboratory of Immuno-Biochemical and Molecular-Genetic Research

References

Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3-16. https://doi.org/10.1007/s00125-018-4711-2

Einarson, T. R., Acs, A., Ludwig, C., & Panton, U. H. (2018). Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovascular Diabetology, 17(1), Article 83. https://doi.org/10.1186/s12933-018-0728-6

Mak, K.-H., Vidal-Petiot, E., Young, R., Sorbets, E., Greenlaw, N., Ford, I., Tendera, M., Ferrari, R., Tardif, J.-C., A Udell, J., Escobedo, J., M Fox, K., Steg, P. G., & CLARIFY Investigators. (2021). Prevalence of diabetes and impact on cardiovascular events and mortality in patients with chronic coronary syndromes, across multiple geographical regions and ethnicities. European Journal of Preventive Cardiology, Article zwab011, https://doi.org/10.1093/eurjpc/zwab011

Das, S., Shah, R., Dimmeler, S., Freedman, J. E., Holley, C., Lee, J. M., Moore, K., Musunuru, K., Wang, D. Z., Xiao, J., Yin, K. J., & American Heart Association Council on Genomic and Precision Medicine, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. (2020). Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation: Genomic and Precision Medicine, 13(4), Article e000062. https://doi.org/10.1161/HCG.0000000000000062

Dexheimer, P. J., & Cochella, L. (2020). MicroRNAs: From Mechanism to Organism. Frontiers in Cell and Developmental Biology, 8, Article 409. https://doi.org/10.3389/fcell.2020.00409

De Rosa, S., Arcidiacono, B., Chiefari, E., Brunetti, A., Indolfi, C., & Foti, D. P. (2018). Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Frontiers in Endocrinology, 9, Article 2. https://doi.org/10.3389/fendo.2018.00002

Su, X., Nie, M., Zhang, G., & Wang, B. (2021). MicroRNA in cardio-metabolic disorders. Clinica Chimica Acta, 518, 134-141. https://doi.org/10.1016/j.cca.2021.03.024

Desgagné, V., Bouchard, L., & Guérin, R. (2017). microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clinical Chemistry and Laboratory Medicine, 55(5), 667-686. https://doi.org/10.1515/cclm-2016-0575

Khan, A. A., Agarwal, H., Reddy, S. S., Arige, V., Natarajan, B., Gupta, V., Kalyani, A., Barthwal, M. K., & Mahapatra, N. R. (2020). MicroRNA 27a Is a Key Modulator of Cholesterol Biosynthesis. Molecular and Cellular Biology, 40(9), Article e00470-19. https://doi.org/10.1128/MCB.00470-19

Karere, G. M., Glenn, J. P., Birnbaum, S., Garcia, R., VandeBerg, J. L., & Cox, L. A. (2019). Identification of coordinately regulated microRNA-gene networks that differ in baboons discordant for LDL-cholesterol. PLOS ONE, 14(3), Article e0213494. https://doi.org/10.1371/journal.pone.0213494

Çakmak, H. A., & Demir, M. (2020). MicroRNA and Cardiovascular Diseases. Balkan Medical Journal, 37(2), 60-71. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.1.94

Chen, W. J., Yin, K., Zhao, G. J., Fu, Y. C., & Tang, C. K. (2012). The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis, 222(2), 314-323. https://doi.org/10.1016/j.atherosclerosis.2012.01.020

Chistiakov, D. A., Sobenin, I. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Research International, 2015, Article 354517. https://doi.org/10.1155/2015/354517

Chen, T., Zhang, Y., Liu, Y., Zhu, D., Yu, J., Li, G., Sun, Z., Wang, W., Jiang, H., & Hong, Z. (2019). MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging, 11(18), 7510-7524. https://doi.org/10.18632/aging.102263

Huang, F., Chen, J., Wang, J., Zhu, P., & Lin, W. (2019). Palmitic Acid Induces MicroRNA-221 Expression to Decrease Glucose Uptake in HepG2 Cells via the PI3K/AKT/GLUT4 Pathway. BioMed Research International, 2019, Article 8171989. https://doi.org/10.1155/2019/8171989

Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Röxe, T., Müller-Ardogan, M., Bonauer, A., Zeiher, A. M., & Dimmeler, S. (2010). Circulating MicroRNAs in Patients With Coronary Artery Disease. Circulation Research, 107(5), 677-684. https://doi.org/10.1161/CIRCRESAHA.109.215566

Karolina, D. S., Tavintharan, S., Armugam, A., Sepramaniam, S., Pek, S. L. T., Wong, M. T. K., Lim, S. C., Sum, C. F., & Jeyaseelan, K. (2012). Circulating miRNA Profiles in Patients with Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism, 97(12), E2271-E2276. https://doi.org/10.1210/jc.2012-1996

Li, M. Y., Pan, S. R., & Qiu, A. Y. (2016). Roles of microRNA-221/222 in type 2 diabetic patients with post-menopausal breast cancer. Genetics and Molecular Research, 15(2), Article gmr.15027259. https://doi.org/10.4238/gmr.15027259

Polyakova, E. A., Zaraiskii, M. I., Mikhaylov, E. N., Baranova, E. I., Galagudza, M. M., & Shlyakhto, E. V. (2021). Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: A cross-sectional study. International Journal of Cardiology, 322, 9-15. https://doi.org/10.1016/j.ijcard.2020.08.043

Jia, Q.-W., Chen, Z.-H., Ding, X.-Q., Liu, J.-Y., Ge, P.-C., An, F.-H., Li, L.-H., Wang, L.-S., Ma, W.-Z., Yang, Z.-J., & Jia, E.-Z. (2017). Predictive Effects of Circulating miR-221, miR-130a and miR-155 for Coronary Heart Disease: A Multi-Ethnic Study in China. Cellular Physiology and Biochemistry, 42(2), 808-823. https://doi.org/10.1159/000478071

Ding, X. Q., Ge, P. C., Liu, Z., Jia, H., Chen, X., An, F. H., Li, L. H., Chen, Z. H., Mao, H. W., Li, Z. Y., Gu, Y., Zhu, T. B., Li, C. J., Wang, L. S., Ma, W. Z., Yang, Z. J., & Jia, E. Z. (2015). Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Scientific Reports, 5, Article 14925. https://doi.org/10.1038/srep14925

de Candia, P., Spinetti, G., Specchia, C., Sangalli, E., La Sala, L., Uccellatore, A., Lupini, S., Genovese, S., Matarese, G., & Ceriello, A. (2017). A unique plasma microRNA profile defines type 2 diabetes progression. PLOS ONE, 12(12), Article e0188980. https://doi.org/10.1371/journal.pone.0188980

Mononen, N., Lyytikäinen, L. P., Seppälä, I., Mishra, P. P., Juonala, M., Waldenberger, M., Klopp, N., Illig, T., Leiviskä, J., Loo, B. M., Laaksonen, R., Oksala, N., Kähönen, M., Hutri-Kähönen, N., Raitakari, O., Lehtimäki, T., & Raitoharju, E. (2019). Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Scientific Reports, 9(1), Article 8887. https://doi.org/10.1038/s41598-019-43793-4

Shvangiradze, T. A., Bondarenko, I. Z., Troshina, E. A., Shestakova, M. V., Ilyin, A. V., Nikankina, L. V., Karpukhin, A. V., Muzaffarova, T. A., Kipkeeva, F. M., Grishina, K. A., & Kuzevanova, A. Yu. (2016). Profil' mikroRNK, assotsiirovannykh s IBS, u patsientov s sakharnym diabetom 2 tipa [Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes]. Ozhirenie i metabolism, 13(4), 34-38. https://doi.org/10.14341/omet2016434-38 [in Russian].

Felekkis, K., & Papaneophytou, C. (2020). Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. International Journal of Molecular Sciences, 21(2), Article 561. https://doi.org/10.3390/ijms21020561

Gonna, H., & Ray, K. K. (2019). The importance of dyslipidaemia in the pathogenesis of cardiovascular disease in people with diabetes. Diabetes, Obesity and Metabolism, 21(S1), 6-16. https://doi.org/10.1111/dom.13691

Zhang, M., Sun, W., Zhou, M., & Tang, Y. (2017). MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Scientific Reports, 7(1), Article 14493. https://doi.org/10.1038/s41598-017-15141-x

Wang, S., Ai, H., Liu, L., Zhang, X., Gao, F., Zheng, L., Yi, J., Sun, L., Yu, C., Zhao, H., & Li, Y. (2019). Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1. American Journal of Physiology-Endocrinology and Metabolism, 317(5), E911-E924. https://doi.org/10.1152/ajpendo.00190.2019

Serik, S. A., Serdobinska-Kanivets, E. M., & Bondar, T. M. (2020). Tsirkuliruyushchie mikroRNK u bol'nykh ishemicheskoi bolezn'yu serdtsa i sakharnym diabetom 2 tipa [Circulating miсroRNAs in patients with ischemic heart disease with type 2 diabetes mellitus]. Pathologia, 17(3), 295-395. https://doi.org/10.14739/2310-1237.2020.3.221727 [in Russian].

Karere, G. M., Glenn, J. P., VandeBerg, J. L., & Cox, L. A. (2012). Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons. BMC Genomics, 13, Article 320. https://doi.org/10.1186/1471-2164-13-320

Kothapalli, D., Castagnino, P., Rader, D. J., Phillips, M. C., Lund-Katz, S., & Assoian, R. K. (2013). Apolipoprotein E-mediated cell cycle arrest linked to p27 and the Cox2-dependent repression of miR221/222. Atherosclerosis, 227(1), 65-71. https://doi.org/10.1016/j.atherosclerosis.2012.12.003

Zhou, Y., Liu, M., Li, J., Wu, B., Tian, W., Shi, L., Zhang, J., & Sun, Z. (2018). The inverted pattern of circulating miR-221-3p and miR-222-3p associated with isolated low HDL-C phenotype. Lipids in Health and Disease, 17(1), Article 188. https://doi.org/10.1186/s12944-018-0842-1

Published

2022-01-26

How to Cite

1.
Serik SA, Serdobinska-Kanivets EМ, Bondar TМ. Correlation between circulating microRNA and lipid indicesin patients with ischemic heart disease and type 2 diabetes mellitus. Zaporozhye medical journal [Internet]. 2022Jan.26 [cited 2024Mar.29];24(1):5-12. Available from: http://zmj.zsmu.edu.ua/article/view/240300

Issue

Section

Original research