Correlation between circulating microRNA and lipid indicesin patients with ischemic heart disease and type 2 diabetes mellitus
DOI:
https://doi.org/10.14739/2310-1210.2022.1.240300Keywords:
coronary artery disease, type 2 diabetes mellitus, miсroRNA, cholesterol, triglyceridesAbstract
The aim of the study was to investigate circulating miRNAs-27a, -221 levels and their correlations with lipid indices in patients with ischemic heart disease (IHD) and type 2 diabetes mellitus.
Materials and methods. The study included 58 patients with stable IHD and type 2 diabetes mellitus, 22 IHD patients without diabetes and 19 healthy controls. MicroRNAs-27a-3р and 221-3р were determined in blood plasma by real time polymerase chain reaction. U6 small nuclear RNA was used for normalization.
Results. The lowest levels of circulating miRNAs-27a and -221 were in IHD patients with diabetes. The decrease in the levels of both microRNAs in patients with diabetes was significant not only in comparison with the control group (P = 0.024, P = 0.006), but also with patients without diabetes (P = 0.011, P = 0.001). In IHD patients without diabetes, microRNAs-27a and -221 levels did not change significantly. In IHD patients with diabetes, microRNA-221 showed a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) (R = 0.382, P = 0.003). MicroRNA-27a was correlated negatively with triglycerides (TG) (R = -0.284, P = 0.051) and positively – with HDL-C (R = 0.257, P = 0.078) at a borderline significance level. The lower level of microRNA-27a (the 1st tertile) was associated with significantly increased TG level in comparison with the 3rd tertile (P = 0.004), and significantly decreased HDL-C level in comparison with the 2nd (P = 0.001) and the 3rd (P = 0.023) tertiles. Patients with lower microRNA-221 level (the 1st tertile) had significantly reduced HDL-C level in comparison with the 3rd tertile(P = 0.007).
Conclusions. The results have demonstrated the significant decrease in circulating microRNAs-27a and -221 levels in IHD patients with type 2 diabetes mellitus and no change in both microRNAs in patients without diabetes. In IHD patients with diabetes, the lower expression of microRNA-27a was associated with the significant elevation of TG and the significant decrease in HDL-C. The lower microRNA-221 level was associated only with the significant decrease in HDL-C.
References
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3-16. https://doi.org/10.1007/s00125-018-4711-2
Einarson, T. R., Acs, A., Ludwig, C., & Panton, U. H. (2018). Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovascular Diabetology, 17(1), Article 83. https://doi.org/10.1186/s12933-018-0728-6
Mak, K.-H., Vidal-Petiot, E., Young, R., Sorbets, E., Greenlaw, N., Ford, I., Tendera, M., Ferrari, R., Tardif, J.-C., A Udell, J., Escobedo, J., M Fox, K., Steg, P. G., & CLARIFY Investigators. (2021). Prevalence of diabetes and impact on cardiovascular events and mortality in patients with chronic coronary syndromes, across multiple geographical regions and ethnicities. European Journal of Preventive Cardiology, Article zwab011, https://doi.org/10.1093/eurjpc/zwab011
Das, S., Shah, R., Dimmeler, S., Freedman, J. E., Holley, C., Lee, J. M., Moore, K., Musunuru, K., Wang, D. Z., Xiao, J., Yin, K. J., & American Heart Association Council on Genomic and Precision Medicine, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. (2020). Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation: Genomic and Precision Medicine, 13(4), Article e000062. https://doi.org/10.1161/HCG.0000000000000062
Dexheimer, P. J., & Cochella, L. (2020). MicroRNAs: From Mechanism to Organism. Frontiers in Cell and Developmental Biology, 8, Article 409. https://doi.org/10.3389/fcell.2020.00409
De Rosa, S., Arcidiacono, B., Chiefari, E., Brunetti, A., Indolfi, C., & Foti, D. P. (2018). Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Frontiers in Endocrinology, 9, Article 2. https://doi.org/10.3389/fendo.2018.00002
Su, X., Nie, M., Zhang, G., & Wang, B. (2021). MicroRNA in cardio-metabolic disorders. Clinica Chimica Acta, 518, 134-141. https://doi.org/10.1016/j.cca.2021.03.024
Desgagné, V., Bouchard, L., & Guérin, R. (2017). microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clinical Chemistry and Laboratory Medicine, 55(5), 667-686. https://doi.org/10.1515/cclm-2016-0575
Khan, A. A., Agarwal, H., Reddy, S. S., Arige, V., Natarajan, B., Gupta, V., Kalyani, A., Barthwal, M. K., & Mahapatra, N. R. (2020). MicroRNA 27a Is a Key Modulator of Cholesterol Biosynthesis. Molecular and Cellular Biology, 40(9), Article e00470-19. https://doi.org/10.1128/MCB.00470-19
Karere, G. M., Glenn, J. P., Birnbaum, S., Garcia, R., VandeBerg, J. L., & Cox, L. A. (2019). Identification of coordinately regulated microRNA-gene networks that differ in baboons discordant for LDL-cholesterol. PLOS ONE, 14(3), Article e0213494. https://doi.org/10.1371/journal.pone.0213494
Çakmak, H. A., & Demir, M. (2020). MicroRNA and Cardiovascular Diseases. Balkan Medical Journal, 37(2), 60-71. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.1.94
Chen, W. J., Yin, K., Zhao, G. J., Fu, Y. C., & Tang, C. K. (2012). The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis, 222(2), 314-323. https://doi.org/10.1016/j.atherosclerosis.2012.01.020
Chistiakov, D. A., Sobenin, I. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Research International, 2015, Article 354517. https://doi.org/10.1155/2015/354517
Chen, T., Zhang, Y., Liu, Y., Zhu, D., Yu, J., Li, G., Sun, Z., Wang, W., Jiang, H., & Hong, Z. (2019). MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging, 11(18), 7510-7524. https://doi.org/10.18632/aging.102263
Huang, F., Chen, J., Wang, J., Zhu, P., & Lin, W. (2019). Palmitic Acid Induces MicroRNA-221 Expression to Decrease Glucose Uptake in HepG2 Cells via the PI3K/AKT/GLUT4 Pathway. BioMed Research International, 2019, Article 8171989. https://doi.org/10.1155/2019/8171989
Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Röxe, T., Müller-Ardogan, M., Bonauer, A., Zeiher, A. M., & Dimmeler, S. (2010). Circulating MicroRNAs in Patients With Coronary Artery Disease. Circulation Research, 107(5), 677-684. https://doi.org/10.1161/CIRCRESAHA.109.215566
Karolina, D. S., Tavintharan, S., Armugam, A., Sepramaniam, S., Pek, S. L. T., Wong, M. T. K., Lim, S. C., Sum, C. F., & Jeyaseelan, K. (2012). Circulating miRNA Profiles in Patients with Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism, 97(12), E2271-E2276. https://doi.org/10.1210/jc.2012-1996
Li, M. Y., Pan, S. R., & Qiu, A. Y. (2016). Roles of microRNA-221/222 in type 2 diabetic patients with post-menopausal breast cancer. Genetics and Molecular Research, 15(2), Article gmr.15027259. https://doi.org/10.4238/gmr.15027259
Polyakova, E. A., Zaraiskii, M. I., Mikhaylov, E. N., Baranova, E. I., Galagudza, M. M., & Shlyakhto, E. V. (2021). Association of myocardial and serum miRNA expression patterns with the presence and extent of coronary artery disease: A cross-sectional study. International Journal of Cardiology, 322, 9-15. https://doi.org/10.1016/j.ijcard.2020.08.043
Jia, Q.-W., Chen, Z.-H., Ding, X.-Q., Liu, J.-Y., Ge, P.-C., An, F.-H., Li, L.-H., Wang, L.-S., Ma, W.-Z., Yang, Z.-J., & Jia, E.-Z. (2017). Predictive Effects of Circulating miR-221, miR-130a and miR-155 for Coronary Heart Disease: A Multi-Ethnic Study in China. Cellular Physiology and Biochemistry, 42(2), 808-823. https://doi.org/10.1159/000478071
Ding, X. Q., Ge, P. C., Liu, Z., Jia, H., Chen, X., An, F. H., Li, L. H., Chen, Z. H., Mao, H. W., Li, Z. Y., Gu, Y., Zhu, T. B., Li, C. J., Wang, L. S., Ma, W. Z., Yang, Z. J., & Jia, E. Z. (2015). Interaction between microRNA expression and classical risk factors in the risk of coronary heart disease. Scientific Reports, 5, Article 14925. https://doi.org/10.1038/srep14925
de Candia, P., Spinetti, G., Specchia, C., Sangalli, E., La Sala, L., Uccellatore, A., Lupini, S., Genovese, S., Matarese, G., & Ceriello, A. (2017). A unique plasma microRNA profile defines type 2 diabetes progression. PLOS ONE, 12(12), Article e0188980. https://doi.org/10.1371/journal.pone.0188980
Mononen, N., Lyytikäinen, L. P., Seppälä, I., Mishra, P. P., Juonala, M., Waldenberger, M., Klopp, N., Illig, T., Leiviskä, J., Loo, B. M., Laaksonen, R., Oksala, N., Kähönen, M., Hutri-Kähönen, N., Raitakari, O., Lehtimäki, T., & Raitoharju, E. (2019). Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Scientific Reports, 9(1), Article 8887. https://doi.org/10.1038/s41598-019-43793-4
Shvangiradze, T. A., Bondarenko, I. Z., Troshina, E. A., Shestakova, M. V., Ilyin, A. V., Nikankina, L. V., Karpukhin, A. V., Muzaffarova, T. A., Kipkeeva, F. M., Grishina, K. A., & Kuzevanova, A. Yu. (2016). Profil' mikroRNK, assotsiirovannykh s IBS, u patsientov s sakharnym diabetom 2 tipa [Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes]. Ozhirenie i metabolism, 13(4), 34-38. https://doi.org/10.14341/omet2016434-38 [in Russian].
Felekkis, K., & Papaneophytou, C. (2020). Challenges in Using Circulating Micro-RNAs as Biomarkers for Cardiovascular Diseases. International Journal of Molecular Sciences, 21(2), Article 561. https://doi.org/10.3390/ijms21020561
Gonna, H., & Ray, K. K. (2019). The importance of dyslipidaemia in the pathogenesis of cardiovascular disease in people with diabetes. Diabetes, Obesity and Metabolism, 21(S1), 6-16. https://doi.org/10.1111/dom.13691
Zhang, M., Sun, W., Zhou, M., & Tang, Y. (2017). MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Scientific Reports, 7(1), Article 14493. https://doi.org/10.1038/s41598-017-15141-x
Wang, S., Ai, H., Liu, L., Zhang, X., Gao, F., Zheng, L., Yi, J., Sun, L., Yu, C., Zhao, H., & Li, Y. (2019). Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1. American Journal of Physiology-Endocrinology and Metabolism, 317(5), E911-E924. https://doi.org/10.1152/ajpendo.00190.2019
Serik, S. A., Serdobinska-Kanivets, E. M., & Bondar, T. M. (2020). Tsirkuliruyushchie mikroRNK u bol'nykh ishemicheskoi bolezn'yu serdtsa i sakharnym diabetom 2 tipa [Circulating miсroRNAs in patients with ischemic heart disease with type 2 diabetes mellitus]. Pathologia, 17(3), 295-395. https://doi.org/10.14739/2310-1237.2020.3.221727 [in Russian].
Karere, G. M., Glenn, J. P., VandeBerg, J. L., & Cox, L. A. (2012). Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons. BMC Genomics, 13, Article 320. https://doi.org/10.1186/1471-2164-13-320
Kothapalli, D., Castagnino, P., Rader, D. J., Phillips, M. C., Lund-Katz, S., & Assoian, R. K. (2013). Apolipoprotein E-mediated cell cycle arrest linked to p27 and the Cox2-dependent repression of miR221/222. Atherosclerosis, 227(1), 65-71. https://doi.org/10.1016/j.atherosclerosis.2012.12.003
Zhou, Y., Liu, M., Li, J., Wu, B., Tian, W., Shi, L., Zhang, J., & Sun, Z. (2018). The inverted pattern of circulating miR-221-3p and miR-222-3p associated with isolated low HDL-C phenotype. Lipids in Health and Disease, 17(1), Article 188. https://doi.org/10.1186/s12944-018-0842-1
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)