Pathobiochemical aspects of alcoholic cardiomyopathy. The role of hydrogen sulfide in the mechanism of cardiocytoprotection (a review)
DOI:
https://doi.org/10.14739/2310-1210.2022.2.242826Keywords:
alcoholic cardiomyopathy, mechanisms, hydrogen sulfide, oxidative stress, inflammation, apoptosis, cardiocytoprotectionAbstract
Aim: systematization of knowledge about the pathobiochemical mechanisms of heart disease in alcoholic cardiomyopathy (ACMP) and the search for promising ways of cardiocytoprotection.
Alcohol abuse is an important medical and social problem, risk factor for metabolic disorders, malnutrition, cancers, dementia, neuropathy, and others. Consumption of large amounts of ethanol increases a risk of sudden cardiac death and cardiac arrhythmias. The term “alcoholic cardiomyopathy” describes a heart disease in people with a history of long-term alcohol use. ACMP is characterized by left ventricular dilatation, decreased wall thickness and (at the later stages) decreased left ventricular ejection fraction (less than 40 %).
Analysis of literature data about the mechanisms of alcohol-induced cardiotoxicity revealed trigger factors for myocardial damage. Negative effect of ethanol on the heart is realized through induction of oxidative-nitrosative stress, apoptosis, inflammation, fibrogenesis, hypoenergetic state and ion pump dysfunction, development of endothelial dysfunction, impaired ribosomal synthesis. In-depth study of biochemical mechanisms and identification of new molecular targets, integrated into the pathogenesis of ACMP, will optimize the pharmacotherapy for this pathology.
Hydrogen sulfide (H2S), is a metabolic factor involved in the regulation of cardiovascular activity. Use of exogenous H2S has potent cardioprotective properties in cardio-vascular diseases. Donors of H2S and H2S-releasing drugs (hybrid molecules – H2S-aspirin, H2S-NO) show a powerful cardioprotective role in various pathological conditions. Therefore, it is advisable to further study the role of H2S system in the pathogenesis of ACMP to develop new approaches to more effective treatment of this disease.
Conclusions. Modulation of the H2S level in the organism may be a predictor of the severity of myocardial damage, as well as a promising vector in pharmacotherapy, including alcoholic cardiomyopathy.
References
Spies, C. D., Sander, M., Stangl, K., Fernandez-Sola, J., Preedy, V. R., Rubin, E., Andreasson, S., Hanna, E. Z., & Kox, W. J. (2001). Effects of alcohol on the heart. Current Opinion in Critical Care, 7(5), 337-343. https://doi.org/10.1097/00075198-200110000-00004
Krenz, M., & Korthuis, R. J. (2012). Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. Journal Molecular and Cellular Cardiology, 52(1), 93-104. https://doi.org/10.1016/j.yjmcc.2011.10.011
Walker, R. K., Cousins, V. M., Umoh, N. A., Jeffress, M. A., Taghipour, D., Al-Rubaiee, M., & Haddad, G. E. (2013). The Good, the Bad, and the Ugly with Alcohol Use and Abuse on the Heart. Alcoholism Clinical & Experimental Research, 37(8), 1253-1260. https://doi.org/10.1111/acer.12109
Mostbauer, H. V. (2020). Ishemichna khvoroba sertsia ta alkohol: dvi storony odniiei medali [Ischemic heart disease and alcohol: two sides of the same coin]. Zdorovia Ukrainy, (6. Kardiolohiia. Revmatolohiia. Kardiokhirurhiia), 38-40. https://health-ua.com/multimedia/6/2/7/2/6/1609233517.pdf [in Ukrainian].
Mostbauer, H. V. (2021). Ishemichna khvoroba sertsia ta alkohol: dvi storony odniiei medali [Ischemic heart disease and alcohol: two sides of the same coin]. Zdorovia Ukrainy, (1. Kardiolohiia. Revmatolohiia. Kardiokhirurhiia), 52-54. https://health-ua.com/multimedia/6/3/6/2/8/1615542952.pdf [in Ukrainian].
Reichart, D., Magnussen, C., Zeller, T., & Blankenberg, S. (2019). Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: A translational review of current literature. Journal of Internal Medicine, 286(4), 362-372. https://doi.org/10.1111/joim.12944
Piano, M. R., & Phillips, S. A. (2014). Alcoholic cardiomyopathy: Pathophysiologic insights. Cardiovascular Toxicology, 14(4), 291-308. https://doi.org/10.1007/s12012-014-9252-4
Dorogoi, A. P. (2016). Alkoholna kardiomiopatiia i alkoholna khvoroba pechinky: problemy ta naslidky vzhyvannia alkoholiu [Alcohol cardiomyopathy and alcohol liver disease: problems and consequences of alcohol consumption]. Ukrainskyi kardiolohichnyi zhurnal, (Supl. 1), 22-31. [in Ukrainian].
Mogos, M. F., Salemi, J. L., Phillips, S. A., & Piano, M. R. (2019). Contemporary Appraisal of Sex Differences in Prevalence, Correlates, and Outcomes of Alcoholic Cardiomyopathy. Alcohol and Alcoholism, 54(4), 386-395. https://doi.org/10.1093/alcalc/agz050
Fernández-Solà, J., Estruch, R., Nicolás, J.-M., Paré, J.-C., Sacanella, E., Antúnez, E., & Urbano-Márquez, A. (1997). Comparison of Alcoholic Cardiomyopathy in Women Versus Menfn1. The American Journal of Cardiology, 80(4), 481-485. https://doi.org/10.1016/s0002-9149(97)00399-8
Piano, M. R., Thur, L. A., Hwang, C. L., & Phillips, S. A. (2020). Effects of Alcohol on the Cardiovascular System in Women. Alcohol Research: Current Reviews, 40(2), Article 12. https://doi.org/10.35946/arcr.v40.2.12
Fernández-Solà, J. (2020). The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients, 12(2), Article 572. https://doi.org/10.3390/nu12020572
Ren, J., & Wold, L. E. (2008). Mechanisms of alcoholic heart disease. Therapeutic Advances in Cardiovascular Disease, 2(6), 497-506. https://doi.org/10.1177/1753944708095137
Leibing, E., & Meyer, T. (2016). Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Herz, 41(6), 478-483. https://doi.org/10.1007/s00059-016-4459-8
Fernández-Solà, J. (2015). Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nature Reviews Cardiology, 12(10), 576-587. https://doi.org/10.1038/nrcardio.2015.91
Molina, P. E., Gardner, J. D., Souza-Smith, F. M., & Whitaker, A. M. (2014). Alcohol Abuse: Critical Pathophysiological Processes and Contribution to Disease Burden. Physiology, 29(3), 203-215. https://doi.org/10.1152/physiol.00055.2013
Laurent, D., & Edwards, J. G. (2014). Alcoholic Cardiomyopathy: Multigenic Changes Underlie Cardiovascular Dysfunction. Journal of Cardiology & Clinical Research, 2(1), Article 1022.
Belenichev, I. F., & Kucher, T. V. (2016). Vliyanie tiol'nykh antioksidantov na sostoyanie nitroziruyushchego stressa v golovnom mozge krys, podverzhennykh khronicheskoi alkogol'noi intoksikatsii [The influence of thiol antioxidants on the state of nitrosating stress in brain of rats with chronic ethanol intoxication]. Farmakolohiia ta likarska toksykolohiia, (2), 24-29. [in Russian].
Steiner, J. L., & Lang, C. H. (2017). Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. The International Journal of Biochemistry & Cell Biology, 89, 125-135. https://doi.org/10.1016/j.biocel.2017.06.009
Fernández-Solà, J., & Planavila Porta, A. (2016). New Treatment Strategies for Alcohol-Induced Heart Damage. International Journal of Molecular Sciences, 17(10), Article 1651. https://doi.org/10.3390/ijms17101651
Rajbanshi, S. L., & Pandanaboina, C. S. (2014). Alcohol stress on cardiac tissue - Ameliorative effects of Thespesia populnea leaf extract. Journal of Cardiology, 63(6), 449-459. https://doi.org/10.1016/j.jjcc.2013.10.015
Vaideeswar, P., Chaudhari, C., Rane, S., Gondhalekar, J., & Dandekar, S. (2014). Cardiac pathology in chronic alcoholics: A preliminary study. Journal of Postgraduate Medicine, 60(4), 372-376. https://doi.org/10.4103/0022-3859.143958
Li, X., Nie, Y., Lian, H., & Hu, S. (2018). Histopathologic features of alcoholic cardiomyopathy compared with idiopathic dilated cardiomyopathy. Medicine, 97(39), Article e12259. https://doi.org/10.1097/MD.0000000000012259
Tertyshnyi, S. I., Shuliatnikova, T. V., & Zubko, M. D. (2020). Heart pathomorphological changes in the long-term alcohol consumption. Pathologia, 17(2), 149-155. https://doi.org/10.14739/2310-1237.2020.2.212734
Belenichev, I. F., Chernii, V. I., Kolesnik, Yu. M., Pavlov, S. V., Andronova, I. A., Abramov, A. V., Ostrovaya, T. V., Bukhtiyarova, N. V., & Kucherenko, L. I. (2009). Ratsional'naya neiroprotektsiya [Rational neuroprotection]. Izdatel' Zaslavskii A. Yu. [in Russian].
Belenichev, I. F., Gorbacheva, S. V., Demchenko, A. V., & Bukhtiyarova, N. V. (2014). The thiol-disulfide balance and the nitric oxide system in the brain tissue of rats subjected to experimental acute impairment of cerebral blood flow: The therapeutic effects of nootropic drugs. Neurochemical Journal, 8(1), 24-27. https://doi.org/10.1134/s181971241401005x
Belenichev, I. F., Burlaka, B. S., Bukhtiyarova, N. V., Aliyeva, E. G., Suprun, E. V., Ishchenko, A. M., & Simbirtsev, A. S. (2021). Pharmacological Correction of Thiol-Disulphide Imbalance in the Rat Brain by Intranasal Form of Il-1b Antagonist in a Model of Chronic Cerebral Ischemia. Neurochemical Journal, 15(1), 30-36. https://doi.org/10.1134/s1819712421010153
Belenichev, I. F., Chekman, I. S., Nagornaya, E. A., Gorbacheva, S. V., Gorchakova, N. A., Bukhtiyarova, N. V., Reznichenko, N. Yu., & Feroz Shakh. (2020). Tiol-disul'fidnaya sistema: rol' v endogennoi tsito- i organoprotektsii, puti farmakologicheskoi modulyatsii [Thiol-disulfide system: the role in endogenous cyto- and organ protection, pharmacological modulation pathways]. TOV Vidavnitstvo «Yuston». [in Russian].
Day, E., & Rudd, J. (2019). Alcohol use disorders and the heart. Addiction, 114(9), 1670-1678. https://doi.org/10.1111/add.14703
Mirijello, A., Tarli, C., Vassallo, G. A., Sestito, L., Antonelli, M., d'Angelo, C., Ferrulli, A., De Cosmo, S., Gasbarrini, A., & Addolorato, G. (2017). Alcoholic cardiomyopathy: What is known and what is not known. European Journal of Internal Medicine, 43, 1-5. https://doi.org/10.1016/j.ejim.2017.06.014
Bielenichev, I. F., Stebliuk, V. S., & Kamyshnyi, A. M. (2017). Kharakter ekspressii mRNK iNOS i eNOS v miokarde krys s alkogol'noi kardiomiopatiei i na fone provodimoi terapii metabolitotropnymi kardioprotektorami [The mRNA expression character of inos and enos in the rats myocardium with alcoholic cardiomyopathy during metabolitotropic cardioprotectors therapy]. Visnyk problem biolohii i medytsyny, (2), 82-87. [in Ukrainian].
Belenichev, I. F., Duyun, I. F., Kamyshnyi, O. M., Mazulin, O. V., Suprun, E. V., & Makyeyeva, L. V. (2020). Expression of mRNA iNOS and mRNA eNOS in the liver of rats with chronic alcohol intoxication and with the introduction of Achillea Micranthoides Klok herb extract. Et krytzka. Biological Markers in Fundamental and Clinical Medicine, 4(1), 6-10. https://doi.org/10.29256/v.04.01.2020.escbm02
Marchi, K. C., Muniz, J. J., & Tirapelli, C. R. (2014). Hypertension and chronic ethanol consumption: What do we know after a century of study? World Journal of Cardiology, 6(5), 283-294. https://doi.org/10.4330/wjc.v6.i5.283
Vary, T. C., Deiter, G., & Lantry, R. (2008). Chronic Alcohol Feeding Impairs mTOR(Ser2448) Phosphorylation in Rat Hearts. Alcoholism, Clinical & Experimental Research, 32(1), 43-51. https://doi.org/10.1111/j.1530-0277.2007.00544.x
Fogle, R. L., Lynch, C. J., Palopoli, M., Deiter, G., Stanley, B. A., & Vary, T. C. (2010). Impact of Chronic Alcohol Ingestion on Cardiac Muscle Protein Expression. Alcoholism, Clinical & Experimental Research, 34(7), 1226-1234. https://doi.org/10.1111/j.1530-0277.2010.01200.x
Lang, C. H., & Korzick, D. H. (2014). Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306(1), R23-R33. https://doi.org/10.1152/ajpregu.00414.2013
Guo, W., Kan, J. T., Cheng, Z. Y., Chen, J. F., Shen, Y. Q., Xu, J., Wu, D., & Zhu, Y. Z. (2012). Hydrogen Sulfide as an Endogenous Modulator in Mitochondria and Mitochondria Dysfunction. Oxidative Medicine and Cellular Longevity, 2012, Article 878052. https://doi.org/10.1155/2012/878052
Kuo, M. M., Kim, D. H., Jandu, S., Bergman, Y., Tan, S., Wang, H., Pandey, D. R., Abraham, T. P., Shoukas, A. A., Berkowitz, D. E., & Santhanam, L. (2016). MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery. American Journal of Physiology-Heart and Circulatory Physiology, 310(1), H71-H79. https://doi.org/10.1152/ajpheart.00574.2014
Luchkova, A. Yu., Hoshovska, Yu. V., Fedichkina, R. A., Strutynska, N. A., & Sagach, V. F. (2017). Pryhnichennia mitokhondrialnoho shliakhu syntezu sirkovodniu pohirshuie skorotlyvu funktsiiu sertsia ta pidvyshchuie chutlyvist mitokhondrialnoi pory do Sa2+ u sertsi shchuriv [Inhibition of mitochondrial H2S synthesis depresses heart function and increases sensitivity of mitochondril pore to calcium load]. Fiziolohichnyi zhurnal, 63(4), 3-9. https://doi.org/10.15407/fz63.04.003 [in Ukrainian].
Murphy, B., Bhattacharya, R., & Mukherjee, P. (2019). Hydrogen sulfide signaling in mitochondria and disease. FASEB Journal, 33(12), 13098-13125. https://doi.org/10.1096/fj.201901304R
Zaichko, N. V., Melnik, A. V., Yoltukhivskyy, M. M., Olhovskiy, A. S., & Palamarchuk, I. V. (2014). Hydrogen sulfide: metabolism, biological and medical role. Ukrainian Biochemical Journal, 86(5), 5-25. https://doi.org/10.15407/ubj86.05.005
Kimura, H. (2014). Production and Physiological Effects of Hydrogen Sulfide. Antioxidants & Redox Signaling, 20(5), 783-793. https://doi.org/10.1089/ars.2013.5309
Łowicka, E., & Bełtowski, J. (2007). Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacological Reports, 59(1), 4-24. http://if-pan.krakow.pl/pjp/pdf/2007/1_4.pdf
Feliers, D., Lee, H. J., & Kasinath, B. S. (2016). Hydrogen Sulfide in Renal Physiology and Disease. Antioxidants & Redox Signaling, 25(13), 720-731. https://doi.org/10.1089/ars.2015.6596
Wu, D., Hu, Q., & Zhu, D. (2018). An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. Oxidative Medicine and Cellular Longevity, 2018, Article 4579140. https://doi.org/10.1155/2018/4579140
Calvert, J. W., Coetzee, W. A., & Lefer, D. J. (2010). Novel Insights Into Hydrogen Sulfide - Mediated Cytoprotection. Antioxidants & Redox Signaling, 12(10), 1203-1217. https://doi.org/10.1089/ars.2009.2882
Papapetropoulos, A., Pyriochou, A., Altaany, Z., Yang, G., Marazioti, A., Zhou, Z., Jeschke, M. G., Branski, L. K., Herndon, D. N., Wang, R., & Szabó, C. (2009). Hydrogen sulfide is an endogenous stimulator of angiogenesis. PNAS, 106(51), 21972-21977. https://doi.org/10.1073/pnas.0908047106
Palamarchuk, I. V., Strutynska, O. B., Melnyk, A. V., & Zaichko, N. V. (2020). Vplyv metforminu ta yoho poiednannia z natrii hidrohensulfidom na stan systemy H2S ta asotsiiovani biokhimichni porushennia v miokardi ta nyrkakh shchuriv za streptozototsyn-indukovanoho diabetu [Influence of metformin and its combination with sodium hydrogen sulphide on H2S system and associated biochemical disorders in myocardium and kidney of rats with streptozotocininduced diabetes]. Visnyk problem biolohii i medytsyny, (3), 133-137. https://doi.org/10.29254/2077-4214-2020-3-157-133-137 [in Ukrainian].
Kang, S. C., Sohn, E. H., & Lee, S. R. (2020). Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxidative Medicine and Cellular Longevity, 2020, Article 4105382. https://doi.org/10.1155/2020/4105382
Li, N., Wang, M. J., Jin, S., Bai, Y. D., Hou, C. L., Ma, F. F., Li, X. H., & Zhu, Y. C. (2016). The H2S Donor NaHS Changes the Expression Pattern of H2S-Producing Enzymes after Myocardial Infarction. Oxidative Medicine and Cellular Longevity, 2016, Article 6492469. https://doi.org/10.1155/2016/6492469
Melnyk, A. V., Zaichko, N. V., Khodakovskyi, O. A., & Khodakivska, O. V. (2018). Statevi osoblyvosti vplyvu sirkovodniu na perebih ishemii-reperfuzii v miokardi shchuriv [Sex characteristics of hydrogen sulfide influence on ischemiareperfsion in miocardium of rats]. Fiziolohichnyi zhurnal, 64(1), 40-46. https://doi.org/10.15407/fz64.01.040 [in Ukrainian].
Wang, R., Szabo, C., Ichinose, F., Ahmed, A., Whiteman, M., & Papapetropoulos, A. (2015). The role of H2S bioavailability in endothelial dysfunction. Trends in Pharmacological Sciences, 36(9), 568-578. https://doi.org/10.1016/j.tips.2015.05.007
Sanchez-Aranguren, L. C., Ahmad, S., Dias, I., Alzahrani, F. A., Rezai, H., Wang, K., & Ahmed, A. (2020). Bioenergetic effects of hydrogen sulfide suppress soluble Flt-1 and soluble endoglin in cystathionine gamma-lyase compromised endothelial cells. Scientific Reports, 10(1), Article 15810. https://doi.org/10.1038/s41598-020-72371-2
Altaany, Z., Yang, G., & Wang, R. (2013). Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. Journal of Cellular and Molecular Medicine, 17(7), 879-888. https://doi.org/10.1111/jcmm.12077
Benetti, L. R., Campos, D., Gurgueira, S. A., Vercesi, A. E., Guedes, C. E., Santos, K. L., Wallace, J. L., Teixeira, S. A., Florenzano, J., Costa, S. K., Muscará, M. N., & Ferreira, H. H. (2013). Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. European Journal of Pharmacology, 698(1-3), 463-469. https://doi.org/10.1016/j.ejphar.2012.11.025
Bir, S. C., Kolluru, G. K., McCarthy, P., Shen, X., Pardue, S., Pattillo, C. B., & Kevil, C. G. (2012). Hydrogen Sulfide Stimulates Ischemic Vascular Remodeling Through Nitric Oxide Synthase and Nitrite Reduction Activity Regulating Hypoxia-Inducible Factor‐1α and Vascular Endothelial Growth Factor-Dependent Angiogenesis. Journal of the American Heart Association, 1(5), Article e004093. https://doi.org/10.1161/JAHA.112.004093
Kolluru, G. K., Yuan, S., Shen, X., & Kevil, C. G. (2015). Chapter Fifteen - H2S Regulation of Nitric Oxide Metabolism. Methods in Enzymology, 554, 271-297. https://doi.org/10.1016/bs.mie.2014.11.040
Cortese-Krott, M. M., Fernandez, B. O., Santos, J. L., Mergia, E., Grman, M., Nagy, P., Kelm, M., Butler, A., & Feelisch, M. (2014). Nitrosopersulfide (SSNOˉ) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biology, 2, 234-244. https://doi.org/10.1016/j.redox.2013.12.031
Wang, Y., Zhao, X., Jin, H., Wei, H., Li, W., Bu, D., Tang, X., Ren, Y., Tang, C., & Du, J. (2009). Role of Hydrogen Sulfide in the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 173-179. https://doi.org/10.1161/ATVBAHA.108.179333
Kar, S., Kambis, T. N., & Mishra, P. K. (2019). Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 316(6), H1237-H1252. https://doi.org/10.1152/ajpheart.00004.2019
Gorini, F., Bustaffa, E., Chatzianagnostou, K., Bianchi, F., & Vassalle, C. (2020). Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. Science of The Total Environment, 743, Article 140818. https://doi.org/10.1016/j.scitotenv.2020.140818
Zheng, Y., Ji, X., Ji, K., & Wang, B. (2015). Hydrogen sulfide prodrugs - a review. Acta Pharmaceutica Sinica B, 5(5), 367-377. https://doi.org/10.1016/j.apsb.2015.06.004
Corvino, A., Frecentese, F., Magli, E., Perissutti, E., Santagada, V., Scognamiglio, A., Caliendo, G., Fiorino, F., & Severino, B. (2021). Trends in H2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants, 10(3), Article 429. https://doi.org/10.3390/antiox10030429
Benavides, G. A., Squadrito, G. L., Mills, R. W., Patel, H. D., Isbell, T. S., Patel, R. P., Darley-Usmar, V. M., Doeller, J. E., & Kraus, D. W. (2007). Hydrogen sulfide mediates the vasoactivity of garlic. PNAS, 104(46), 17977-17982. https://doi.org/10.1073/pnas.0705710104
Li, L., Whiteman, M., Guan, Y. Y., Neo, K. L., Cheng, Y., Lee, S. W., Zhao, Y., Baskar, R., Tan, C. H., & Moore, P. K. (2008). Characterization of a Novel, Water-Soluble Hydrogen Sulfide-Releasing Molecule (GYY4137): New Insights Into the Biology of Hydrogen Sulfide. Circulation, 117(18), 2351-2360. https://doi.org/10.1161/CIRCULATIONAHA.107.753467
Rose, P., Dymock, B. W., & Moore, P. K. (2015). Chapter Nine - GYY4137, a Novel Water-Soluble, H2S-Releasing Molecule. Methods in Enzymology, 554, 143-167. https://doi.org/10.1016/bs.mie.2014.11.014
Yuan, S., Shen, X., & Kevil, C. G. (2017). Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxidants & Redox Signaling, 27(10), 634-653. https://doi.org/10.1089/ars.2017.7096
Zhao, Y., Wang, H., & Xian, M. (2011). Cysteine-Activated Hydrogen Sulfide (H2S) Donors. Journal of the American Chemical Society, 133(1), 15-17. https://doi.org/10.1021/ja1085723
Roger, T., Raynaud, F., Bouillaud, F., Ransy, C., Simonet, S., Crespo, C., Bourguignon, M. P., Villeneuve, N., Vilaine, J. P., Artaud, I., & Galardon, E. (2013). New Biologically Active Hydrogen Sulfide Donors. Chembiochem, 14(17), 2268-2271. https://doi.org/10.1002/cbic.201300552
Martelli, A., Testai, L., Citi, V., Marino, A., Pugliesi, I., Barresi, E., Nesi, G., Rapposelli, S., Taliani, S., Da Settimo, F., Breschi, M. C., & Calderone, V. (2013). Arylthioamides as H2S Donors: L-Cysteine-Activated Releasing Properties and Vascular Effects in Vitro and in Vivo. ACS Medicinal Chemistry Letters, 4(10), 904-908. https://doi.org/10.1021/ml400239a
Barresi, E., Nesi, G., Citi, V., Piragine, E., Piano, I., Taliani, S., Da Settimo, F., Rapposelli, S., Testai, L., Breschi, M. C., Gargini, C., Calderone, V., & Martelli, A. (2017). Iminothioethers as Hydrogen Sulfide Donors: From the Gasotransmitter Release to the Vascular Effects. Journal of Medicinal Chemistry, 60(17), 7512-7523. https://doi.org/10.1021/acs.jmedchem.7b00888
Mitidieri, E., Tramontano, T., Gurgone, D., Citi, V., Calderone, V., Brancaleone, V., Katsouda, A., Nagahara, N., Papapetropoulos, A., Cirino, G., d'Emmanuele di Villa Bianca, R., & Sorrentino, R. (2018). Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide, 75, 53-59. https://doi.org/10.1016/j.niox.2018.02.003
Ercolano, G., De Cicco, P., Frecentese, F., Saccone, I., Corvino, A., Giordano, F., Magli, E., Fiorino, F., Severino, B., Calderone, V., Citi, V., Cirino, G., & Ianaro, A. (2019). Anti-metastatic Properties of Naproxen-HBTA in a Murine Model of Cutaneous Melanoma. Frontiers in Pharmacology, 10, Article 66. https://doi.org/10.3389/fphar.2019.00066
Martelli, A., Testai, L., Citi, V., Marino, A., Bellagambi, F. G., Ghimenti, S., Breschi, M. C., & Calderone, V. (2014). Pharmacological characterization of the vascular effects of aryl isothiocyanates: Is hydrogen sulfide the real player? Vascular Pharmacology, 60(1), 32-41. https://doi.org/10.1016/j.vph.2013.11.003
Citi, V., Corvino, A., Fiorino, F., Frecentese, F., Magli, E., Perissutti, E., Santagada, V., Brogi, S., Flori, L., Gorica, E., Testai, L., Martelli, A., Calderone, V., Caliendo, G., & Severino, B. (2020). Structure-activity relationships study of isothiocyanates for H2S releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. Journal of Advanced Research, 27, 41-53. https://doi.org/10.1016/j.jare.2020.02.017
Zhao, Y., Steiger, A. K., & Pluth, M. D. (2019). Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways. Journal of the American Chemical Society, 141(34), 13610-13618. https://doi.org/10.1021/jacs.9b06319
Wu, D., Hu, Q., Ma, F., & Zhu, Y. Z. (2016). Vasorelaxant Effect of a New Hydrogen Sulfide-Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through cGMP Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article 7075682. https://doi.org/10.1155/2016/7075682
Rossoni, G., Manfredi, B., Tazzari, V., Sparatore, A., Trivulzio, S., Del Soldato, P., & Berti, F. (2010). Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats. European Journal of Pharmacology, 648(1-3), 139-145. https://doi.org/10.1016/j.ejphar.2010.08.039
Karwi, Q. G., Bornbaum, J., Boengler, K., Torregrossa, R., Whiteman, M., Wood, M. E., Schulz, R., & Baxter, G. F. (2017). AP39, a mitochondria-targeting hydrogen sulfide (H2S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 174(4), 287-301. https://doi.org/10.1111/bph.13688
Polhemus, D. J., Li, Z., Pattillo, C. B., Gojon, G., Sr, Gojon, G., Jr, Giordano, T., & Krum, H. (2015). A Novel Hydrogen Sulfide Prodrug, SG1002, Promotes Hydrogen Sulfide and Nitric Oxide Bioavailability in Heart Failure Patients. Cardiovascular Therapeutics, 33(4), 216-226. https://doi.org/10.1111/1755-5922.12128
Liang, B., Xiao, T., Long, J., Liu, M., Li, Z., Liu, S., & Yang, J. (2017). Hydrogen sulfide alleviates myocardial fibrosis in mice with alcoholic cardiomyopathy by downregulating autophagy. International Journal of Molecular Medicine, 40(6), 1781-1791. https://doi.org/10.3892/ijmm.2017.3191
Wiliński, B., Wiliński, J., Somogyi, E., Góralska, M., & Piotrowska, J. (2010). Ramipril Affects Hydrogen Sulfide Generation in Mouse Liver and Kidney. Folia Biologica, 58(3-4), 177-180. https://doi.org/10.3409/fb58_3-4.177-180
Xu, Y., Du, H. P., Li, J., Xu, R., Wang, Y. L., You, S. J., Liu, H., Wang, F., Cao, Y. J., Liu, C. F., & Hu, L. F. (2014). Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacological Research, 87, 18-25. https://doi.org/10.1016/j.phrs.2014.06.006
Wiliński, B., Wiliński, J., Somogyi, E., Piotrowska, J., & Góralska, M. (2011). Digoxin increases hydrogen sulfide concentrations in brain, heart and kidney tissues in mice. Pharmacological Reports, 63(5), 1243-1247. https://doi.org/10.1016/s1734-1140(11)70645-4
Ma, X., Jiang, Z., Wang, Z., & Zhang, Z. (2020). Administration of metformin alleviates atherosclerosis by promoting H2S production via regulating CSE expression. Journal of Cellular Physiology, 235(3), 2102-2112. https://doi.org/10.1002/jcp.29112
Zhang, J., Zhang, Q., Wang, Y., Li, J., Bai, Z., Zhao, Q., Wang, Z., He, D., Zhang, J., & Chen, Y. (2019). Toxicities and beneficial protection of H2S donors based on nonsteroidal anti-inflammatory drugs. MedChemComm, 10(5), 742-756. https://doi.org/10.1039/c8md00611c
Bielenichev, I. F., Vizir, V. A., Mamchur, V. Yo., & Kuriata, O. V. (2019). Mesto tiotriazolina v galeree sovremennykh metabolitotropnykh lekarstvennykh sredstv [Place of tiotriazoline in the gallery of modern metabolitotropic medicines]. Zaporozhye medical journal, 21(1), 118-128. https://doi.org/10.14739/2310-1210.2019.1.155856 [in Russian].
Mazur, I. A., Chekman, I. S., Belenichev, I. F., Voloshin, N. A., Gorchakova, N. A., & Kucherenko, L. I. (2007). Metabolitotropnye preparaty [Metabolitotropic drugs]. Zaporozhye. [in Russian].
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)