Pathobiochemical aspects of alcoholic cardiomyopathy. The role of hydrogen sulfide in the mechanism of cardiocytoprotection (a review)

Authors

DOI:

https://doi.org/10.14739/2310-1210.2022.2.242826

Keywords:

alcoholic cardiomyopathy, mechanisms, hydrogen sulfide, oxidative stress, inflammation, apoptosis, cardiocytoprotection

Abstract

Aim: systematization of knowledge about the pathobiochemical mechanisms of heart disease in alcoholic cardiomyopathy (ACMP) and the search for promising ways of cardiocytoprotection.

Alcohol abuse is an important medical and social problem, risk factor for metabolic disorders, malnutrition, cancers, dementia, neuropathy, and others. Consumption of large amounts of ethanol increases a risk of sudden cardiac death and cardiac arrhythmias. The term “alcoholic cardiomyopathy” describes a heart disease in people with a history of long-term alcohol use. ACMP is characterized by left ventricular dilatation, decreased wall thickness and (at the later stages) decreased left ventricular ejection fraction (less than 40 %).

Analysis of literature data about the mechanisms of alcohol-induced cardiotoxicity revealed trigger factors for myocardial damage. Negative effect of ethanol on the heart is realized through induction of oxidative-nitrosative stress, apoptosis, inflammation, fibrogenesis, hypoenergetic state and ion pump dysfunction, development of endothelial dysfunction, impaired ribosomal synthesis. In-depth study of biochemical mechanisms and identification of new molecular targets, integrated into the pathogenesis of ACMP, will optimize the pharmacotherapy for this pathology.

Hydrogen sulfide (H2S), is a metabolic factor involved in the regulation of cardiovascular activity. Use of exogenous H2S has potent cardioprotective properties in cardio-vascular diseases. Donors of H2S and H2S-releasing drugs (hybrid molecules – H2S-aspirin, H2S-NO) show a powerful cardioprotective role in various pathological conditions. Therefore, it is advisable to further study the role of H2S system in the pathogenesis of ACMP to develop new approaches to more effective treatment of this disease.

Conclusions. Modulation of the H2S level in the organism may be a predictor of the severity of myocardial damage, as well as a promising vector in pharmacotherapy, including alcoholic cardiomyopathy.

Author Biographies

N. I. Voloshchuk, National Pirogov Memorial Medical University, Vinnytsia, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Pharmacology

K. V. Rudenko, National M. Amosov Institute of Cardiovascular Surgery affiliated to National Academy of Medical Sciences of Ukraine, Kyiv

MD, PhD, DSc, Professor, Deputy Director of Therapeutic and Coordinating Work

O. R. Matiash, National M. Amosov Institute of Cardiovascular Surgery affiliated to National Academy of Medical Sciences of Ukraine, Kyiv

Junior Researcher

O. M. Denysiuk, National Pirogov Memorial Medical University, Vinnytsia, Ukraine

MD, PhD, Associate Professor of the Department of Pharmacology

References

Spies, C. D., Sander, M., Stangl, K., Fernandez-Sola, J., Preedy, V. R., Rubin, E., Andreasson, S., Hanna, E. Z., & Kox, W. J. (2001). Effects of alcohol on the heart. Current Opinion in Critical Care, 7(5), 337-343. https://doi.org/10.1097/00075198-200110000-00004

Krenz, M., & Korthuis, R. J. (2012). Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. Journal Molecular and Cellular Cardiology, 52(1), 93-104. https://doi.org/10.1016/j.yjmcc.2011.10.011

Walker, R. K., Cousins, V. M., Umoh, N. A., Jeffress, M. A., Taghipour, D., Al-Rubaiee, M., & Haddad, G. E. (2013). The Good, the Bad, and the Ugly with Alcohol Use and Abuse on the Heart. Alcoholism Clinical & Experimental Research, 37(8), 1253-1260. https://doi.org/10.1111/acer.12109

Mostbauer, H. V. (2020). Ishemichna khvoroba sertsia ta alkohol: dvi storony odniiei medali [Ischemic heart disease and alcohol: two sides of the same coin]. Zdorovia Ukrainy, (6. Kardiolohiia. Revmatolohiia. Kardiokhirurhiia), 38-40. https://health-ua.com/multimedia/6/2/7/2/6/1609233517.pdf [in Ukrainian].

Mostbauer, H. V. (2021). Ishemichna khvoroba sertsia ta alkohol: dvi storony odniiei medali [Ischemic heart disease and alcohol: two sides of the same coin]. Zdorovia Ukrainy, (1. Kardiolohiia. Revmatolohiia. Kardiokhirurhiia), 52-54. https://health-ua.com/multimedia/6/3/6/2/8/1615542952.pdf [in Ukrainian].

Reichart, D., Magnussen, C., Zeller, T., & Blankenberg, S. (2019). Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: A translational review of current literature. Journal of Internal Medicine, 286(4), 362-372. https://doi.org/10.1111/joim.12944

Piano, M. R., & Phillips, S. A. (2014). Alcoholic cardiomyopathy: Pathophysiologic insights. Cardiovascular Toxicology, 14(4), 291-308. https://doi.org/10.1007/s12012-014-9252-4

Dorogoi, A. P. (2016). Alkoholna kardiomiopatiia i alkoholna khvoroba pechinky: problemy ta naslidky vzhyvannia alkoholiu [Alcohol cardiomyopathy and alcohol liver disease: problems and consequences of alcohol consumption]. Ukrainskyi kardiolohichnyi zhurnal, (Supl. 1), 22-31. [in Ukrainian].

Mogos, M. F., Salemi, J. L., Phillips, S. A., & Piano, M. R. (2019). Contemporary Appraisal of Sex Differences in Prevalence, Correlates, and Outcomes of Alcoholic Cardiomyopathy. Alcohol and Alcoholism, 54(4), 386-395. https://doi.org/10.1093/alcalc/agz050

Fernández-Solà, J., Estruch, R., Nicolás, J.-M., Paré, J.-C., Sacanella, E., Antúnez, E., & Urbano-Márquez, A. (1997). Comparison of Alcoholic Cardiomyopathy in Women Versus Menfn1. The American Journal of Cardiology, 80(4), 481-485. https://doi.org/10.1016/s0002-9149(97)00399-8

Piano, M. R., Thur, L. A., Hwang, C. L., & Phillips, S. A. (2020). Effects of Alcohol on the Cardiovascular System in Women. Alcohol Research: Current Reviews, 40(2), Article 12. https://doi.org/10.35946/arcr.v40.2.12

Fernández-Solà, J. (2020). The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients, 12(2), Article 572. https://doi.org/10.3390/nu12020572

Ren, J., & Wold, L. E. (2008). Mechanisms of alcoholic heart disease. Therapeutic Advances in Cardiovascular Disease, 2(6), 497-506. https://doi.org/10.1177/1753944708095137

Leibing, E., & Meyer, T. (2016). Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Herz, 41(6), 478-483. https://doi.org/10.1007/s00059-016-4459-8

Fernández-Solà, J. (2015). Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nature Reviews Cardiology, 12(10), 576-587. https://doi.org/10.1038/nrcardio.2015.91

Molina, P. E., Gardner, J. D., Souza-Smith, F. M., & Whitaker, A. M. (2014). Alcohol Abuse: Critical Pathophysiological Processes and Contribution to Disease Burden. Physiology, 29(3), 203-215. https://doi.org/10.1152/physiol.00055.2013

Laurent, D., & Edwards, J. G. (2014). Alcoholic Cardiomyopathy: Multigenic Changes Underlie Cardiovascular Dysfunction. Journal of Cardiology & Clinical Research, 2(1), Article 1022.

Belenichev, I. F., & Kucher, T. V. (2016). Vliyanie tiol'nykh antioksidantov na sostoyanie nitroziruyushchego stressa v golovnom mozge krys, podverzhennykh khronicheskoi alkogol'noi intoksikatsii [The influence of thiol antioxidants on the state of nitrosating stress in brain of rats with chronic ethanol intoxication]. Farmakolohiia ta likarska toksykolohiia, (2), 24-29. [in Russian].

Steiner, J. L., & Lang, C. H. (2017). Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. The International Journal of Biochemistry & Cell Biology, 89, 125-135. https://doi.org/10.1016/j.biocel.2017.06.009

Fernández-Solà, J., & Planavila Porta, A. (2016). New Treatment Strategies for Alcohol-Induced Heart Damage. International Journal of Molecular Sciences, 17(10), Article 1651. https://doi.org/10.3390/ijms17101651

Rajbanshi, S. L., & Pandanaboina, C. S. (2014). Alcohol stress on cardiac tissue - Ameliorative effects of Thespesia populnea leaf extract. Journal of Cardiology, 63(6), 449-459. https://doi.org/10.1016/j.jjcc.2013.10.015

Vaideeswar, P., Chaudhari, C., Rane, S., Gondhalekar, J., & Dandekar, S. (2014). Cardiac pathology in chronic alcoholics: A preliminary study. Journal of Postgraduate Medicine, 60(4), 372-376. https://doi.org/10.4103/0022-3859.143958

Li, X., Nie, Y., Lian, H., & Hu, S. (2018). Histopathologic features of alcoholic cardiomyopathy compared with idiopathic dilated cardiomyopathy. Medicine, 97(39), Article e12259. https://doi.org/10.1097/MD.0000000000012259

Tertyshnyi, S. I., Shuliatnikova, T. V., & Zubko, M. D. (2020). Heart pathomorphological changes in the long-term alcohol consumption. Pathologia, 17(2), 149-155. https://doi.org/10.14739/2310-1237.2020.2.212734

Belenichev, I. F., Chernii, V. I., Kolesnik, Yu. M., Pavlov, S. V., Andronova, I. A., Abramov, A. V., Ostrovaya, T. V., Bukhtiyarova, N. V., & Kucherenko, L. I. (2009). Ratsional'naya neiroprotektsiya [Rational neuroprotection]. Izdatel' Zaslavskii A. Yu. [in Russian].

Belenichev, I. F., Gorbacheva, S. V., Demchenko, A. V., & Bukhtiyarova, N. V. (2014). The thiol-disulfide balance and the nitric oxide system in the brain tissue of rats subjected to experimental acute impairment of cerebral blood flow: The therapeutic effects of nootropic drugs. Neurochemical Journal, 8(1), 24-27. https://doi.org/10.1134/s181971241401005x

Belenichev, I. F., Burlaka, B. S., Bukhtiyarova, N. V., Aliyeva, E. G., Suprun, E. V., Ishchenko, A. M., & Simbirtsev, A. S. (2021). Pharmacological Correction of Thiol-Disulphide Imbalance in the Rat Brain by Intranasal Form of Il-1b Antagonist in a Model of Chronic Cerebral Ischemia. Neurochemical Journal, 15(1), 30-36. https://doi.org/10.1134/s1819712421010153

Belenichev, I. F., Chekman, I. S., Nagornaya, E. A., Gorbacheva, S. V., Gorchakova, N. A., Bukhtiyarova, N. V., Reznichenko, N. Yu., & Feroz Shakh. (2020). Tiol-disul'fidnaya sistema: rol' v endogennoi tsito- i organoprotektsii, puti farmakologicheskoi modulyatsii [Thiol-disulfide system: the role in endogenous cyto- and organ protection, pharmacological modulation pathways]. TOV Vidavnitstvo «Yuston». [in Russian].

Day, E., & Rudd, J. (2019). Alcohol use disorders and the heart. Addiction, 114(9), 1670-1678. https://doi.org/10.1111/add.14703

Mirijello, A., Tarli, C., Vassallo, G. A., Sestito, L., Antonelli, M., d'Angelo, C., Ferrulli, A., De Cosmo, S., Gasbarrini, A., & Addolorato, G. (2017). Alcoholic cardiomyopathy: What is known and what is not known. European Journal of Internal Medicine, 43, 1-5. https://doi.org/10.1016/j.ejim.2017.06.014

Bielenichev, I. F., Stebliuk, V. S., & Kamyshnyi, A. M. (2017). Kharakter ekspressii mRNK iNOS i eNOS v miokarde krys s alkogol'noi kardiomiopatiei i na fone provodimoi terapii metabolitotropnymi kardioprotektorami [The mRNA expression character of inos and enos in the rats myocardium with alcoholic cardiomyopathy during metabolitotropic cardioprotectors therapy]. Visnyk problem biolohii i medytsyny, (2), 82-87. [in Ukrainian].

Belenichev, I. F., Duyun, I. F., Kamyshnyi, O. M., Mazulin, O. V., Suprun, E. V., & Makyeyeva, L. V. (2020). Expression of mRNA iNOS and mRNA eNOS in the liver of rats with chronic alcohol intoxication and with the introduction of Achillea Micranthoides Klok herb extract. Et krytzka. Biological Markers in Fundamental and Clinical Medicine, 4(1), 6-10. https://doi.org/10.29256/v.04.01.2020.escbm02

Marchi, K. C., Muniz, J. J., & Tirapelli, C. R. (2014). Hypertension and chronic ethanol consumption: What do we know after a century of study? World Journal of Cardiology, 6(5), 283-294. https://doi.org/10.4330/wjc.v6.i5.283

Vary, T. C., Deiter, G., & Lantry, R. (2008). Chronic Alcohol Feeding Impairs mTOR(Ser2448) Phosphorylation in Rat Hearts. Alcoholism, Clinical & Experimental Research, 32(1), 43-51. https://doi.org/10.1111/j.1530-0277.2007.00544.x

Fogle, R. L., Lynch, C. J., Palopoli, M., Deiter, G., Stanley, B. A., & Vary, T. C. (2010). Impact of Chronic Alcohol Ingestion on Cardiac Muscle Protein Expression. Alcoholism, Clinical & Experimental Research, 34(7), 1226-1234. https://doi.org/10.1111/j.1530-0277.2010.01200.x

Lang, C. H., & Korzick, D. H. (2014). Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306(1), R23-R33. https://doi.org/10.1152/ajpregu.00414.2013

Guo, W., Kan, J. T., Cheng, Z. Y., Chen, J. F., Shen, Y. Q., Xu, J., Wu, D., & Zhu, Y. Z. (2012). Hydrogen Sulfide as an Endogenous Modulator in Mitochondria and Mitochondria Dysfunction. Oxidative Medicine and Cellular Longevity, 2012, Article 878052. https://doi.org/10.1155/2012/878052

Kuo, M. M., Kim, D. H., Jandu, S., Bergman, Y., Tan, S., Wang, H., Pandey, D. R., Abraham, T. P., Shoukas, A. A., Berkowitz, D. E., & Santhanam, L. (2016). MPST but not CSE is the primary regulator of hydrogen sulfide production and function in the coronary artery. American Journal of Physiology-Heart and Circulatory Physiology, 310(1), H71-H79. https://doi.org/10.1152/ajpheart.00574.2014

Luchkova, A. Yu., Hoshovska, Yu. V., Fedichkina, R. A., Strutynska, N. A., & Sagach, V. F. (2017). Pryhnichennia mitokhondrialnoho shliakhu syntezu sirkovodniu pohirshuie skorotlyvu funktsiiu sertsia ta pidvyshchuie chutlyvist mitokhondrialnoi pory do Sa2+ u sertsi shchuriv [Inhibition of mitochondrial H2S synthesis depresses heart function and increases sensitivity of mitochondril pore to calcium load]. Fiziolohichnyi zhurnal, 63(4), 3-9. https://doi.org/10.15407/fz63.04.003 [in Ukrainian].

Murphy, B., Bhattacharya, R., & Mukherjee, P. (2019). Hydrogen sulfide signaling in mitochondria and disease. FASEB Journal, 33(12), 13098-13125. https://doi.org/10.1096/fj.201901304R

Zaichko, N. V., Melnik, A. V., Yoltukhivskyy, M. M., Olhovskiy, A. S., & Palamarchuk, I. V. (2014). Hydrogen sulfide: metabolism, biological and medical role. Ukrainian Biochemical Journal, 86(5), 5-25. https://doi.org/10.15407/ubj86.05.005

Kimura, H. (2014). Production and Physiological Effects of Hydrogen Sulfide. Antioxidants & Redox Signaling, 20(5), 783-793. https://doi.org/10.1089/ars.2013.5309

Łowicka, E., & Bełtowski, J. (2007). Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacological Reports, 59(1), 4-24. http://if-pan.krakow.pl/pjp/pdf/2007/1_4.pdf

Feliers, D., Lee, H. J., & Kasinath, B. S. (2016). Hydrogen Sulfide in Renal Physiology and Disease. Antioxidants & Redox Signaling, 25(13), 720-731. https://doi.org/10.1089/ars.2015.6596

Wu, D., Hu, Q., & Zhu, D. (2018). An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. Oxidative Medicine and Cellular Longevity, 2018, Article 4579140. https://doi.org/10.1155/2018/4579140

Calvert, J. W., Coetzee, W. A., & Lefer, D. J. (2010). Novel Insights Into Hydrogen Sulfide - Mediated Cytoprotection. Antioxidants & Redox Signaling, 12(10), 1203-1217. https://doi.org/10.1089/ars.2009.2882

Papapetropoulos, A., Pyriochou, A., Altaany, Z., Yang, G., Marazioti, A., Zhou, Z., Jeschke, M. G., Branski, L. K., Herndon, D. N., Wang, R., & Szabó, C. (2009). Hydrogen sulfide is an endogenous stimulator of angiogenesis. PNAS, 106(51), 21972-21977. https://doi.org/10.1073/pnas.0908047106

Palamarchuk, I. V., Strutynska, O. B., Melnyk, A. V., & Zaichko, N. V. (2020). Vplyv metforminu ta yoho poiednannia z natrii hidrohensulfidom na stan systemy H2S ta asotsiiovani biokhimichni porushennia v miokardi ta nyrkakh shchuriv za streptozototsyn-indukovanoho diabetu [Influence of metformin and its combination with sodium hydrogen sulphide on H2S system and associated biochemical disorders in myocardium and kidney of rats with streptozotocininduced diabetes]. Visnyk problem biolohii i medytsyny, (3), 133-137. https://doi.org/10.29254/2077-4214-2020-3-157-133-137 [in Ukrainian].

Kang, S. C., Sohn, E. H., & Lee, S. R. (2020). Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxidative Medicine and Cellular Longevity, 2020, Article 4105382. https://doi.org/10.1155/2020/4105382

Li, N., Wang, M. J., Jin, S., Bai, Y. D., Hou, C. L., Ma, F. F., Li, X. H., & Zhu, Y. C. (2016). The H2S Donor NaHS Changes the Expression Pattern of H2S-Producing Enzymes after Myocardial Infarction. Oxidative Medicine and Cellular Longevity, 2016, Article 6492469. https://doi.org/10.1155/2016/6492469

Melnyk, A. V., Zaichko, N. V., Khodakovskyi, O. A., & Khodakivska, O. V. (2018). Statevi osoblyvosti vplyvu sirkovodniu na perebih ishemii-reperfuzii v miokardi shchuriv [Sex characteristics of hydrogen sulfide influence on ischemiareperfsion in miocardium of rats]. Fiziolohichnyi zhurnal, 64(1), 40-46. https://doi.org/10.15407/fz64.01.040 [in Ukrainian].

Wang, R., Szabo, C., Ichinose, F., Ahmed, A., Whiteman, M., & Papapetropoulos, A. (2015). The role of H2S bioavailability in endothelial dysfunction. Trends in Pharmacological Sciences, 36(9), 568-578. https://doi.org/10.1016/j.tips.2015.05.007

Sanchez-Aranguren, L. C., Ahmad, S., Dias, I., Alzahrani, F. A., Rezai, H., Wang, K., & Ahmed, A. (2020). Bioenergetic effects of hydrogen sulfide suppress soluble Flt-1 and soluble endoglin in cystathionine gamma-lyase compromised endothelial cells. Scientific Reports, 10(1), Article 15810. https://doi.org/10.1038/s41598-020-72371-2

Altaany, Z., Yang, G., & Wang, R. (2013). Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. Journal of Cellular and Molecular Medicine, 17(7), 879-888. https://doi.org/10.1111/jcmm.12077

Benetti, L. R., Campos, D., Gurgueira, S. A., Vercesi, A. E., Guedes, C. E., Santos, K. L., Wallace, J. L., Teixeira, S. A., Florenzano, J., Costa, S. K., Muscará, M. N., & Ferreira, H. H. (2013). Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. European Journal of Pharmacology, 698(1-3), 463-469. https://doi.org/10.1016/j.ejphar.2012.11.025

Bir, S. C., Kolluru, G. K., McCarthy, P., Shen, X., Pardue, S., Pattillo, C. B., & Kevil, C. G. (2012). Hydrogen Sulfide Stimulates Ischemic Vascular Remodeling Through Nitric Oxide Synthase and Nitrite Reduction Activity Regulating Hypoxia-Inducible Factor‐1α and Vascular Endothelial Growth Factor-Dependent Angiogenesis. Journal of the American Heart Association, 1(5), Article e004093. https://doi.org/10.1161/JAHA.112.004093

Kolluru, G. K., Yuan, S., Shen, X., & Kevil, C. G. (2015). Chapter Fifteen - H2S Regulation of Nitric Oxide Metabolism. Methods in Enzymology, 554, 271-297. https://doi.org/10.1016/bs.mie.2014.11.040

Cortese-Krott, M. M., Fernandez, B. O., Santos, J. L., Mergia, E., Grman, M., Nagy, P., Kelm, M., Butler, A., & Feelisch, M. (2014). Nitrosopersulfide (SSNOˉ) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biology, 2, 234-244. https://doi.org/10.1016/j.redox.2013.12.031

Wang, Y., Zhao, X., Jin, H., Wei, H., Li, W., Bu, D., Tang, X., Ren, Y., Tang, C., & Du, J. (2009). Role of Hydrogen Sulfide in the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(2), 173-179. https://doi.org/10.1161/ATVBAHA.108.179333

Kar, S., Kambis, T. N., & Mishra, P. K. (2019). Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 316(6), H1237-H1252. https://doi.org/10.1152/ajpheart.00004.2019

Gorini, F., Bustaffa, E., Chatzianagnostou, K., Bianchi, F., & Vassalle, C. (2020). Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. Science of The Total Environment, 743, Article 140818. https://doi.org/10.1016/j.scitotenv.2020.140818

Zheng, Y., Ji, X., Ji, K., & Wang, B. (2015). Hydrogen sulfide prodrugs - a review. Acta Pharmaceutica Sinica B, 5(5), 367-377. https://doi.org/10.1016/j.apsb.2015.06.004

Corvino, A., Frecentese, F., Magli, E., Perissutti, E., Santagada, V., Scognamiglio, A., Caliendo, G., Fiorino, F., & Severino, B. (2021). Trends in H2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants, 10(3), Article 429. https://doi.org/10.3390/antiox10030429

Benavides, G. A., Squadrito, G. L., Mills, R. W., Patel, H. D., Isbell, T. S., Patel, R. P., Darley-Usmar, V. M., Doeller, J. E., & Kraus, D. W. (2007). Hydrogen sulfide mediates the vasoactivity of garlic. PNAS, 104(46), 17977-17982. https://doi.org/10.1073/pnas.0705710104

Li, L., Whiteman, M., Guan, Y. Y., Neo, K. L., Cheng, Y., Lee, S. W., Zhao, Y., Baskar, R., Tan, C. H., & Moore, P. K. (2008). Characterization of a Novel, Water-Soluble Hydrogen Sulfide-Releasing Molecule (GYY4137): New Insights Into the Biology of Hydrogen Sulfide. Circulation, 117(18), 2351-2360. https://doi.org/10.1161/CIRCULATIONAHA.107.753467

Rose, P., Dymock, B. W., & Moore, P. K. (2015). Chapter Nine - GYY4137, a Novel Water-Soluble, H2S-Releasing Molecule. Methods in Enzymology, 554, 143-167. https://doi.org/10.1016/bs.mie.2014.11.014

Yuan, S., Shen, X., & Kevil, C. G. (2017). Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxidants & Redox Signaling, 27(10), 634-653. https://doi.org/10.1089/ars.2017.7096

Zhao, Y., Wang, H., & Xian, M. (2011). Cysteine-Activated Hydrogen Sulfide (H2S) Donors. Journal of the American Chemical Society, 133(1), 15-17. https://doi.org/10.1021/ja1085723

Roger, T., Raynaud, F., Bouillaud, F., Ransy, C., Simonet, S., Crespo, C., Bourguignon, M. P., Villeneuve, N., Vilaine, J. P., Artaud, I., & Galardon, E. (2013). New Biologically Active Hydrogen Sulfide Donors. Chembiochem, 14(17), 2268-2271. https://doi.org/10.1002/cbic.201300552

Martelli, A., Testai, L., Citi, V., Marino, A., Pugliesi, I., Barresi, E., Nesi, G., Rapposelli, S., Taliani, S., Da Settimo, F., Breschi, M. C., & Calderone, V. (2013). Arylthioamides as H2S Donors: L-Cysteine-Activated Releasing Properties and Vascular Effects in Vitro and in Vivo. ACS Medicinal Chemistry Letters, 4(10), 904-908. https://doi.org/10.1021/ml400239a

Barresi, E., Nesi, G., Citi, V., Piragine, E., Piano, I., Taliani, S., Da Settimo, F., Rapposelli, S., Testai, L., Breschi, M. C., Gargini, C., Calderone, V., & Martelli, A. (2017). Iminothioethers as Hydrogen Sulfide Donors: From the Gasotransmitter Release to the Vascular Effects. Journal of Medicinal Chemistry, 60(17), 7512-7523. https://doi.org/10.1021/acs.jmedchem.7b00888

Mitidieri, E., Tramontano, T., Gurgone, D., Citi, V., Calderone, V., Brancaleone, V., Katsouda, A., Nagahara, N., Papapetropoulos, A., Cirino, G., d'Emmanuele di Villa Bianca, R., & Sorrentino, R. (2018). Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide, 75, 53-59. https://doi.org/10.1016/j.niox.2018.02.003

Ercolano, G., De Cicco, P., Frecentese, F., Saccone, I., Corvino, A., Giordano, F., Magli, E., Fiorino, F., Severino, B., Calderone, V., Citi, V., Cirino, G., & Ianaro, A. (2019). Anti-metastatic Properties of Naproxen-HBTA in a Murine Model of Cutaneous Melanoma. Frontiers in Pharmacology, 10, Article 66. https://doi.org/10.3389/fphar.2019.00066

Martelli, A., Testai, L., Citi, V., Marino, A., Bellagambi, F. G., Ghimenti, S., Breschi, M. C., & Calderone, V. (2014). Pharmacological characterization of the vascular effects of aryl isothiocyanates: Is hydrogen sulfide the real player? Vascular Pharmacology, 60(1), 32-41. https://doi.org/10.1016/j.vph.2013.11.003

Citi, V., Corvino, A., Fiorino, F., Frecentese, F., Magli, E., Perissutti, E., Santagada, V., Brogi, S., Flori, L., Gorica, E., Testai, L., Martelli, A., Calderone, V., Caliendo, G., & Severino, B. (2020). Structure-activity relationships study of isothiocyanates for H2S releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. Journal of Advanced Research, 27, 41-53. https://doi.org/10.1016/j.jare.2020.02.017

Zhao, Y., Steiger, A. K., & Pluth, M. D. (2019). Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways. Journal of the American Chemical Society, 141(34), 13610-13618. https://doi.org/10.1021/jacs.9b06319

Wu, D., Hu, Q., Ma, F., & Zhu, Y. Z. (2016). Vasorelaxant Effect of a New Hydrogen Sulfide-Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through cGMP Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article 7075682. https://doi.org/10.1155/2016/7075682

Rossoni, G., Manfredi, B., Tazzari, V., Sparatore, A., Trivulzio, S., Del Soldato, P., & Berti, F. (2010). Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats. European Journal of Pharmacology, 648(1-3), 139-145. https://doi.org/10.1016/j.ejphar.2010.08.039

Karwi, Q. G., Bornbaum, J., Boengler, K., Torregrossa, R., Whiteman, M., Wood, M. E., Schulz, R., & Baxter, G. F. (2017). AP39, a mitochondria-targeting hydrogen sulfide (H2S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 174(4), 287-301. https://doi.org/10.1111/bph.13688

Polhemus, D. J., Li, Z., Pattillo, C. B., Gojon, G., Sr, Gojon, G., Jr, Giordano, T., & Krum, H. (2015). A Novel Hydrogen Sulfide Prodrug, SG1002, Promotes Hydrogen Sulfide and Nitric Oxide Bioavailability in Heart Failure Patients. Cardiovascular Therapeutics, 33(4), 216-226. https://doi.org/10.1111/1755-5922.12128

Liang, B., Xiao, T., Long, J., Liu, M., Li, Z., Liu, S., & Yang, J. (2017). Hydrogen sulfide alleviates myocardial fibrosis in mice with alcoholic cardiomyopathy by downregulating autophagy. International Journal of Molecular Medicine, 40(6), 1781-1791. https://doi.org/10.3892/ijmm.2017.3191

Wiliński, B., Wiliński, J., Somogyi, E., Góralska, M., & Piotrowska, J. (2010). Ramipril Affects Hydrogen Sulfide Generation in Mouse Liver and Kidney. Folia Biologica, 58(3-4), 177-180. https://doi.org/10.3409/fb58_3-4.177-180

Xu, Y., Du, H. P., Li, J., Xu, R., Wang, Y. L., You, S. J., Liu, H., Wang, F., Cao, Y. J., Liu, C. F., & Hu, L. F. (2014). Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacological Research, 87, 18-25. https://doi.org/10.1016/j.phrs.2014.06.006

Wiliński, B., Wiliński, J., Somogyi, E., Piotrowska, J., & Góralska, M. (2011). Digoxin increases hydrogen sulfide concentrations in brain, heart and kidney tissues in mice. Pharmacological Reports, 63(5), 1243-1247. https://doi.org/10.1016/s1734-1140(11)70645-4

Ma, X., Jiang, Z., Wang, Z., & Zhang, Z. (2020). Administration of metformin alleviates atherosclerosis by promoting H2S production via regulating CSE expression. Journal of Cellular Physiology, 235(3), 2102-2112. https://doi.org/10.1002/jcp.29112

Zhang, J., Zhang, Q., Wang, Y., Li, J., Bai, Z., Zhao, Q., Wang, Z., He, D., Zhang, J., & Chen, Y. (2019). Toxicities and beneficial protection of H2S donors based on nonsteroidal anti-inflammatory drugs. MedChemComm, 10(5), 742-756. https://doi.org/10.1039/c8md00611c

Bielenichev, I. F., Vizir, V. A., Mamchur, V. Yo., & Kuriata, O. V. (2019). Mesto tiotriazolina v galeree sovremennykh metabolitotropnykh lekarstvennykh sredstv [Place of tiotriazoline in the gallery of modern metabolitotropic medicines]. Zaporozhye medical journal, 21(1), 118-128. https://doi.org/10.14739/2310-1210.2019.1.155856 [in Russian].

Mazur, I. A., Chekman, I. S., Belenichev, I. F., Voloshin, N. A., Gorchakova, N. A., & Kucherenko, L. I. (2007). Metabolitotropnye preparaty [Metabolitotropic drugs]. Zaporozhye. [in Russian].

Published

2022-04-04

How to Cite

1.
Voloshchuk NI, Rudenko KV, Matiash OR, Denysiuk OM. Pathobiochemical aspects of alcoholic cardiomyopathy. The role of hydrogen sulfide in the mechanism of cardiocytoprotection (a review). Zaporozhye Medical Journal [Internet]. 2022Apr.4 [cited 2024Nov.26];24(2):219-2. Available from: http://zmj.zsmu.edu.ua/article/view/242826

Issue

Section

Review