The clinical and pathogenetic role of lncRNA MEG3 and miRNA-421 in obese children with non-alcoholic fatty liver disease

Authors

DOI:

https://doi.org/10.14739/2310-1210.2022.3.252754

Keywords:

fatty liver, non-coding RNA, transcriptome, obesity, children

Abstract

The danger of a “silent epidemic” of non-alcoholic fatty liver disease (NAFLD) in children is the growing number of patients with irreversible liver disease, comorbid conditions, high rate of disease progression compared to adults, so finding biomarkers of early stages of NAFLD is crucial for effective treatment.

Aim. To examine the differences in the circulating lncRNA MEG3 and miR-421 levels in children with NAFLD and obesity compared to normal weight and obese children without NAFLD and to study the relationship of transcriptome markers with clinical, laboratory and instrumental parameters.

Materials and methods. 66 patients aged 8 to 17 years were included in the study. The mean age of patients was 12.40 ± 2.46 years. The presence of hepatic steatosis was determined by measuring the controlled attenuation parameter (CAP) with FibroScan®502 touch (Echosens, France). Based on the presence of hepatic steatosis (according to CAP) and obesity (according to body mass index), patients were divided into 3 groups: group 1 consisted of 29 obese patients with NAFLD, group 2 – 30 obese patients without hepatic steatosis, group 3 – 7 patients with normal weight without hepatic steatosis. Parameters of transaminase activity, carbohydrate metabolism and lipid metabolism were quantified, cytokeratin-18, cytokine profile were measured by enzyme-linked immunosorbent assay. Levels of circulating miR-421, lncRNA MEG3 were assessed by quantitative real-time polymerase chain reaction.

Results. Comparative analysis of serum lncRNA MEG3 and miR-421 levels showed a significant increase in lncRNA MEG3 and miR-421 levels in obese children compared with those in the control group (P ˂ 0.05), as well as in patients with NAFLD compared with children in group 2 (P ˂ 0.05). Serum lncRNA MEG3 and miR-421 levels were moderately positively correlated with adipose tissue distribution parameters, the degree of obesity, the liver parenchyma elasticity, the degree of pancreatic steatosis. miR-421 was positively correlated with TNFα levels, the ratio of pro-inflammatory and anti-inflammatory cytokines, negatively – with HDL levels. The serum levels of lncRNA MEG3 and miR-421 showed a tendency for a positive correlation with HOMA-IR.

Conclusions. In obese children with NAFLD, a significant increase in serum lncRNA MEG3 and miR-421 levels is observed, which is associated with excessive adipose tissue and its distribution parameters, the degree of liver and pancreatic steatosis, insulin resistance, inflammation, dyslipidemia, that may be useful for early diagnosis of NAFLD in pediatric clinical practice.

Author Biography

N. Yu. Zavhorodnia, SI “Institute of Gastroenterology of the National Academy of Medical Sciences of Ukraine”, Dnipro

MD, PhD, Head of the Department of Pediatric Gastroenterology

References

Sahota, A. K., Shapiro, W. L., Newton, K. P., Kim, S. T., Chung, J., & Schwimmer, J. B. (2020). Incidence of Nonalcoholic Fatty Liver Disease in Children: 2009-2018. Pediatrics, 146(6), Article e20200771. https://doi.org/10.1542/peds.2020-0771

Shapiro, W. L., Noon, S. L., & Schwimmer, J. B. (2021). Recent advances in the epidemiology of nonalcoholic fatty liver disease in children. Pediatric Obesity, 16(11), Article e12849. https://doi.org/10.1111/ijpo.12849

Mitsinikos, T., Mrowczynski-Hernandez, P., & Kohli, R. (2021). Pediatric Nonalcoholic Fatty Liver Disease. Pediatric Clinics of North America, 68(6), 1309-1320. https://doi.org/10.1016/j.pcl.2021.07.013

Papachristodoulou, A., Kavvadas, D., Karamitsos, A., Papamitsou, T., Chatzidimitriou, M., & Sioga, A. (2021). Diagnosis and Staging of Pediatric Non-Alcoholic Fatty Liver Disease: Is Classical Ultrasound the Answer? Pediatric Reports, 13(2), 312-321. https://doi.org/10.3390/pediatric13020039

Bridges, M. C., Daulagala, A. C., & Kourtidis, A. (2021). LNCcation: lncRNA localization and function. Journal of Cell Biology, 220(2), Article e202009045. https://doi.org/10.1083/jcb.202009045

Abaturov, A. E., & Babуch, V. L. (2021). Svit mikroRNK hepatobiliarnoi systemy [The world of microRNAs of the hepatobiliary system]. Zdorov’ia dytyny, 16(1), 84-93. https://doi.org/10.22141/2224-0551.16.1.2021.226462 [in Ukrainian].

Di Mauro, S., Scamporrino, A., Filippello, A., Di Pino, A., Scicali, R., Malaguarnera, R., Purrello, F., & Piro, S. (2021). Clinical and Molecular Biomarkers for Diagnosis and Staging of NAFLD. International Journal of Molecular Sciences, 22(21), Article 11905. https://doi.org/10.3390/ijms222111905

Sun, C., Liu, X., Yi, Z., Xiao, X., Yang, M., Hu, G., Liu, H., Liao, L., & Huang, F. (2015). Genome-wide analysis of long noncoding RNA expression profiles in patients with non-alcoholic fatty liver disease. IUBMB Life, 67(11), 847-852. https://doi.org/10.1002/iub.1442

Formichi, C., Nigi, L., Grieco, G. E., Maccora, C., Fignani, D., Brusco, N., Licata, G., Sebastiani, G., & Dotta, F. (2021). Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. International Journal of Molecular Sciences, 22(14), Article 7716. https://doi.org/10.3390/ijms22147716

Tello-Flores, V. A., Beltrán-Anaya, F. O., Ramírez-Vargas, M. A., Esteban-Casales, B. E., Navarro-Tito, N., Alarcón-Romero, L., Luciano-Villa, C. A., Ramírez, M., Del Moral-Hernández, Ó., & Flores-Alfaro, E. (2021). Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. International Journal of Molecular Sciences, 22(14), Article 7256. https://doi.org/10.3390/ijms22147256

Wu, Y. Y., Wu, S., Li, X. F., Luo, S., Wang, A., Yin, S. Q., Huang, C., & Li, J. (2021). LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. European Journal of Pharmacology, 911, Article 174462. https://doi.org/10.1016/j.ejphar.2021.174462

Yu, F., Geng, W., Dong, P., Huang, Z., & Zheng, J. (2018). LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death & Disease, 9(10), Article 1014. https://doi.org/10.1038/s41419-018-1068-x

Cheng, X., Shihabudeen Haider Ali, M. S., Moran, M., Viana, M. P., Schlichte, S. L., Zimmerman, M. C., Khalimonchuk, O., Feinberg, M. W., & Sun, X. (2021). Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biology, 40, Article 101863. https://doi.org/10.1016/j.redox.2021.101863

Tadokoro, T., Morishita, A., & Masaki, T. (2021). Diagnosis and Therapeutic Management of Liver Fibrosis by MicroRNA. International Journal of Molecular Sciences, 22(15), Article 8139. https://doi.org/10.3390/ijms22158139

Hutny, M., Hofman, J., Zachurzok, A., & Matusik, P. (2021). MicroRNAs as the promising markers of comorbidities in childhood obesity - A systematic review. Pediatric Obesity, Article e12880. https://doi.org/10.1111/ijpo.12880

Zhang, J. W., & Pan, H. T. (2021). microRNA profiles of serum exosomes derived from children with nonalcoholic fatty liver. Genes & Genomics. https://doi.org/10.1007/s13258-021-01150-8

World Health Organization. (n.d.). Growth reference 5-19 years - BMI-for-age (5-19 years). https://www.who.int/toolkits/growth-reference-data-for-5to19-years/indicators/bmi-for-age

Vajro, P., Lenta, S., Socha, P., Dhawan, A., McKiernan, P., Baumann, U., Durmaz, O., Lacaille, F., McLin, V., & Nobili, V. (2012). Diagnosis of Nonalcoholic Fatty Liver Disease in Children and Adolescents Position Paper of the ESPGHAN Hepatology Committee. Journal of Pediatric Gastroenterology and Nutrition, 54(5), 700-713. https://doi.org/10.1097/MPG.0b013e318252a13f

Huang, P., Huang, F. Z., Liu, H. Z., Zhang, T. Y., Yang, M. S., & Sun, C. Z. (2019). LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 94, 1-8. https://doi.org/10.1016/j.metabol.2019.01.018

Hsieh, P. F., Yu, C. C., Chu, P. M., & Hsieh, P. L. (2021). Long Non-Coding RNA MEG3 in Cellular Stemness. International Journal of Molecular Sciences, 22(10), Article 5348. https://doi.org/10.3390/ijms22105348

Pielok, A., & Marycz, K. (2020). Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. International Journal of Molecular Sciences, 21(11), Article 4182. https://doi.org/10.3390/ijms21114182

Simion, V., Haemmig, S., & Feinberg, M. W. (2019). LncRNAs in vascular biology and disease. Vascular Pharmacology, 114, 145-156. https://doi.org/10.1016/j.vph.2018.01.003

Shihabudeen Haider Ali, M. S., Cheng, X., Moran, M., Haemmig, S., Naldrett, M. J., Alvarez, S., Feinberg, M. W., & Sun, X. (2019). LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Research, 47(3), 1505-1522. https://doi.org/10.1093/nar/gky1190

Mohamed, D. I., Khairy, E., Khedr, S. A., Habib, E. K., Elayat, W. M., & El-Kharashi, O. A. (2020). N-acetylcysteine (NAC) alleviates the peripheral neuropathy associated with liver cirrhosis via modulation of neural MEG3/PAR2/ NF-ҡB axis. Neurochemistry International, 132, Article 104602. https://doi.org/10.1016/j.neuint.2019.104602

Zhang, W., Conway, S. J., Liu, Y., Snider, P., Chen, H., Gao, H., Liu, Y., Isidan, K., Lopez, K. J., Campana, G., Li, P., Ekser, B., Francis, H., Shou, W., & Kubal, C. (2021). Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury. Cells, 10(8), Article 2129. https://doi.org/10.3390/cells10082129

Li, Z., Jin, C., Chen, S., Zheng, Y., Huang, Y., Jia, L., Ge, W., & Zhou, Y. (2017). Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Molecular and Cellular Biochemistry, 433(1-2), 51-60. https://doi.org/10.1007/s11010-017-3015-z

Wang, Q., Li, M., Shen, Z., Bu, F., Yu, H., Pan, X., Yang, Y., Meng, X., Huang, C., & Li, J. (2018). The Long Non-coding RNA MEG3/miR-let-7c-5p Axis Regulates Ethanol-Induced Hepatic Steatosis and Apoptosis by Targeting NLRC5. Frontiers in Pharmacology, 9, Article 302. https://doi.org/10.3389/fphar.2018.00302

Zhang, L., Yang, Z., Trottier, J., Barbier, O., & Wang, L. (2017). Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology, 65(2), 604-615. https://doi.org/10.1002/hep.28882

Abaturov, A. E., Stepanov, Yu. M., & Zavgorodnyaya, N. Yu. (2019). MikroRNK pri nealkogol'noi zhirovoi bolezni pecheni u detei [MicroRNA in children with non-alcoholic fatty liver disease]. Dominanta Print. [in Russian].

Chen, Y., Li, Z., Chen, X., & Zhang, S. (2021). Long non-coding RNAs: From disease code to drug role. Acta Pharmaceutica Sinica B, 11(2), 340-354. https://doi.org/10.1016/j.apsb.2020.10.001

Chen, P. Y., Hsieh, P. L., Peng, C. Y., Liao, Y. W., Yu, C. H., & Yu, C. C. (2021). LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. Journal of the Formosan Medical Association, 120(4), 1137-1142. https://doi.org/10.1016/j.jfma.2020.09.006

Ye, W., Ni, Z., Yicheng, S., Pan, H., Huang, Y., Xiong, Y., & Liu, T. (2019). Anisomycin inhibits angiogenesis in ovarian cancer by attenuating the molecular sponge effect of the lncRNA Meg3/miR 421/PDGFRA axis. International Journal of Oncology, 55(6), 1296-1312. https://doi.org/10.3892/ijo.2019.4887

Zhang, Y., Fu, Y., Zheng, Y., Wen, Z., & Wang, C. (2020). Identification of differentially expressed mRNA and the Hub mRNAs modulated by lncRNA Meg3 as a competing endogenous RNA in brown adipose tissue of mice on a high-fat diet. Adipocyte, 9(1), 346-358. https://doi.org/10.1080/21623945.2020.1789283

Cheng, Y., Mai, J., Hou, T., & Ping, J. (2016). MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3. Biochemical and Biophysical Research Communications, 474(1), 57-63. https://doi.org/10.1016/j.bbrc.2016.04.065

Infante-Menéndez, J., López-Pastor, A. R., González-López, P., Gómez-Hernández, A., & Escribano, O. (2020). The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants, 9(7), Article 607. https://doi.org/10.3390/antiox9070607

Zhang, Y., Gong, W., Dai, S., Huang, G., Shen, X., Gao, M., Xu, Z., Zeng, Y., & He, F. (2012). Downregulation of Human Farnesoid X Receptor by miR-421 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells. Molecular Cancer Research, 10(4), 516-522. https://doi.org/10.1158/1541-7786.MCR-11-0473

Daneshmoghadam, J., Omidifar, A., Akbari Dilmaghani, N., Karimi, Z., Emamgholipour, S., & Shanaki, M. (2021). The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. Journal of Clinical Laboratory Analysis, 35(5), Article e23741. https://doi.org/10.1002/jcla.23741

Braga, A. A., Bortolin, R. H., Graciano-Saldarriaga, M. E., Hirata, T. D., Cerda, A., de Freitas, R. C., Lin-Wang, H. T., Borges, J. B., França, J. I., Masi, L. N., Curi, R., Pithon-Curi, T. C., Sampaio, M. F., Castro, L. R., Bastos, G. M., Hirata, R. D., & Hirata, M. H. (2021). High serum miR-421 is associated with metabolic dysregulation and inflammation in patients with metabolic syndrome. Epigenomics, 13(6), 423-436. https://doi.org/10.2217/epi-2020-0247

Published

2022-05-30

How to Cite

1.
Zavhorodnia NY. The clinical and pathogenetic role of lncRNA MEG3 and miRNA-421 in obese children with non-alcoholic fatty liver disease. Zaporozhye medical journal [Internet]. 2022May30 [cited 2024Feb.24];24(3):293-300. Available from: http://zmj.zsmu.edu.ua/article/view/252754

Issue

Section

Original research