The clinical and pathogenetic role of lncRNA MEG3 and miRNA-421 in obese children with non-alcoholic fatty liver disease
DOI:
https://doi.org/10.14739/2310-1210.2022.3.252754Keywords:
fatty liver, non-coding RNA, transcriptome, obesity, childrenAbstract
The danger of a “silent epidemic” of non-alcoholic fatty liver disease (NAFLD) in children is the growing number of patients with irreversible liver disease, comorbid conditions, high rate of disease progression compared to adults, so finding biomarkers of early stages of NAFLD is crucial for effective treatment.
Aim. To examine the differences in the circulating lncRNA MEG3 and miR-421 levels in children with NAFLD and obesity compared to normal weight and obese children without NAFLD and to study the relationship of transcriptome markers with clinical, laboratory and instrumental parameters.
Materials and methods. 66 patients aged 8 to 17 years were included in the study. The mean age of patients was 12.40 ± 2.46 years. The presence of hepatic steatosis was determined by measuring the controlled attenuation parameter (CAP) with FibroScan®502 touch (Echosens, France). Based on the presence of hepatic steatosis (according to CAP) and obesity (according to body mass index), patients were divided into 3 groups: group 1 consisted of 29 obese patients with NAFLD, group 2 – 30 obese patients without hepatic steatosis, group 3 – 7 patients with normal weight without hepatic steatosis. Parameters of transaminase activity, carbohydrate metabolism and lipid metabolism were quantified, cytokeratin-18, cytokine profile were measured by enzyme-linked immunosorbent assay. Levels of circulating miR-421, lncRNA MEG3 were assessed by quantitative real-time polymerase chain reaction.
Results. Comparative analysis of serum lncRNA MEG3 and miR-421 levels showed a significant increase in lncRNA MEG3 and miR-421 levels in obese children compared with those in the control group (P ˂ 0.05), as well as in patients with NAFLD compared with children in group 2 (P ˂ 0.05). Serum lncRNA MEG3 and miR-421 levels were moderately positively correlated with adipose tissue distribution parameters, the degree of obesity, the liver parenchyma elasticity, the degree of pancreatic steatosis. miR-421 was positively correlated with TNFα levels, the ratio of pro-inflammatory and anti-inflammatory cytokines, negatively – with HDL levels. The serum levels of lncRNA MEG3 and miR-421 showed a tendency for a positive correlation with HOMA-IR.
Conclusions. In obese children with NAFLD, a significant increase in serum lncRNA MEG3 and miR-421 levels is observed, which is associated with excessive adipose tissue and its distribution parameters, the degree of liver and pancreatic steatosis, insulin resistance, inflammation, dyslipidemia, that may be useful for early diagnosis of NAFLD in pediatric clinical practice.
References
Sahota, A. K., Shapiro, W. L., Newton, K. P., Kim, S. T., Chung, J., & Schwimmer, J. B. (2020). Incidence of Nonalcoholic Fatty Liver Disease in Children: 2009-2018. Pediatrics, 146(6), Article e20200771. https://doi.org/10.1542/peds.2020-0771
Shapiro, W. L., Noon, S. L., & Schwimmer, J. B. (2021). Recent advances in the epidemiology of nonalcoholic fatty liver disease in children. Pediatric Obesity, 16(11), Article e12849. https://doi.org/10.1111/ijpo.12849
Mitsinikos, T., Mrowczynski-Hernandez, P., & Kohli, R. (2021). Pediatric Nonalcoholic Fatty Liver Disease. Pediatric Clinics of North America, 68(6), 1309-1320. https://doi.org/10.1016/j.pcl.2021.07.013
Papachristodoulou, A., Kavvadas, D., Karamitsos, A., Papamitsou, T., Chatzidimitriou, M., & Sioga, A. (2021). Diagnosis and Staging of Pediatric Non-Alcoholic Fatty Liver Disease: Is Classical Ultrasound the Answer? Pediatric Reports, 13(2), 312-321. https://doi.org/10.3390/pediatric13020039
Bridges, M. C., Daulagala, A. C., & Kourtidis, A. (2021). LNCcation: lncRNA localization and function. Journal of Cell Biology, 220(2), Article e202009045. https://doi.org/10.1083/jcb.202009045
Abaturov, A. E., & Babуch, V. L. (2021). Svit mikroRNK hepatobiliarnoi systemy [The world of microRNAs of the hepatobiliary system]. Zdorov’ia dytyny, 16(1), 84-93. https://doi.org/10.22141/2224-0551.16.1.2021.226462 [in Ukrainian].
Di Mauro, S., Scamporrino, A., Filippello, A., Di Pino, A., Scicali, R., Malaguarnera, R., Purrello, F., & Piro, S. (2021). Clinical and Molecular Biomarkers for Diagnosis and Staging of NAFLD. International Journal of Molecular Sciences, 22(21), Article 11905. https://doi.org/10.3390/ijms222111905
Sun, C., Liu, X., Yi, Z., Xiao, X., Yang, M., Hu, G., Liu, H., Liao, L., & Huang, F. (2015). Genome-wide analysis of long noncoding RNA expression profiles in patients with non-alcoholic fatty liver disease. IUBMB Life, 67(11), 847-852. https://doi.org/10.1002/iub.1442
Formichi, C., Nigi, L., Grieco, G. E., Maccora, C., Fignani, D., Brusco, N., Licata, G., Sebastiani, G., & Dotta, F. (2021). Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. International Journal of Molecular Sciences, 22(14), Article 7716. https://doi.org/10.3390/ijms22147716
Tello-Flores, V. A., Beltrán-Anaya, F. O., Ramírez-Vargas, M. A., Esteban-Casales, B. E., Navarro-Tito, N., Alarcón-Romero, L., Luciano-Villa, C. A., Ramírez, M., Del Moral-Hernández, Ó., & Flores-Alfaro, E. (2021). Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. International Journal of Molecular Sciences, 22(14), Article 7256. https://doi.org/10.3390/ijms22147256
Wu, Y. Y., Wu, S., Li, X. F., Luo, S., Wang, A., Yin, S. Q., Huang, C., & Li, J. (2021). LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. European Journal of Pharmacology, 911, Article 174462. https://doi.org/10.1016/j.ejphar.2021.174462
Yu, F., Geng, W., Dong, P., Huang, Z., & Zheng, J. (2018). LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death & Disease, 9(10), Article 1014. https://doi.org/10.1038/s41419-018-1068-x
Cheng, X., Shihabudeen Haider Ali, M. S., Moran, M., Viana, M. P., Schlichte, S. L., Zimmerman, M. C., Khalimonchuk, O., Feinberg, M. W., & Sun, X. (2021). Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biology, 40, Article 101863. https://doi.org/10.1016/j.redox.2021.101863
Tadokoro, T., Morishita, A., & Masaki, T. (2021). Diagnosis and Therapeutic Management of Liver Fibrosis by MicroRNA. International Journal of Molecular Sciences, 22(15), Article 8139. https://doi.org/10.3390/ijms22158139
Hutny, M., Hofman, J., Zachurzok, A., & Matusik, P. (2021). MicroRNAs as the promising markers of comorbidities in childhood obesity - A systematic review. Pediatric Obesity, Article e12880. https://doi.org/10.1111/ijpo.12880
Zhang, J. W., & Pan, H. T. (2021). microRNA profiles of serum exosomes derived from children with nonalcoholic fatty liver. Genes & Genomics. https://doi.org/10.1007/s13258-021-01150-8
World Health Organization. (n.d.). Growth reference 5-19 years - BMI-for-age (5-19 years). https://www.who.int/toolkits/growth-reference-data-for-5to19-years/indicators/bmi-for-age
Vajro, P., Lenta, S., Socha, P., Dhawan, A., McKiernan, P., Baumann, U., Durmaz, O., Lacaille, F., McLin, V., & Nobili, V. (2012). Diagnosis of Nonalcoholic Fatty Liver Disease in Children and Adolescents Position Paper of the ESPGHAN Hepatology Committee. Journal of Pediatric Gastroenterology and Nutrition, 54(5), 700-713. https://doi.org/10.1097/MPG.0b013e318252a13f
Huang, P., Huang, F. Z., Liu, H. Z., Zhang, T. Y., Yang, M. S., & Sun, C. Z. (2019). LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 94, 1-8. https://doi.org/10.1016/j.metabol.2019.01.018
Hsieh, P. F., Yu, C. C., Chu, P. M., & Hsieh, P. L. (2021). Long Non-Coding RNA MEG3 in Cellular Stemness. International Journal of Molecular Sciences, 22(10), Article 5348. https://doi.org/10.3390/ijms22105348
Pielok, A., & Marycz, K. (2020). Non-Coding RNAs as Potential Novel Biomarkers for Early Diagnosis of Hepatic Insulin Resistance. International Journal of Molecular Sciences, 21(11), Article 4182. https://doi.org/10.3390/ijms21114182
Simion, V., Haemmig, S., & Feinberg, M. W. (2019). LncRNAs in vascular biology and disease. Vascular Pharmacology, 114, 145-156. https://doi.org/10.1016/j.vph.2018.01.003
Shihabudeen Haider Ali, M. S., Cheng, X., Moran, M., Haemmig, S., Naldrett, M. J., Alvarez, S., Feinberg, M. W., & Sun, X. (2019). LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Research, 47(3), 1505-1522. https://doi.org/10.1093/nar/gky1190
Mohamed, D. I., Khairy, E., Khedr, S. A., Habib, E. K., Elayat, W. M., & El-Kharashi, O. A. (2020). N-acetylcysteine (NAC) alleviates the peripheral neuropathy associated with liver cirrhosis via modulation of neural MEG3/PAR2/ NF-ҡB axis. Neurochemistry International, 132, Article 104602. https://doi.org/10.1016/j.neuint.2019.104602
Zhang, W., Conway, S. J., Liu, Y., Snider, P., Chen, H., Gao, H., Liu, Y., Isidan, K., Lopez, K. J., Campana, G., Li, P., Ekser, B., Francis, H., Shou, W., & Kubal, C. (2021). Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury. Cells, 10(8), Article 2129. https://doi.org/10.3390/cells10082129
Li, Z., Jin, C., Chen, S., Zheng, Y., Huang, Y., Jia, L., Ge, W., & Zhou, Y. (2017). Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Molecular and Cellular Biochemistry, 433(1-2), 51-60. https://doi.org/10.1007/s11010-017-3015-z
Wang, Q., Li, M., Shen, Z., Bu, F., Yu, H., Pan, X., Yang, Y., Meng, X., Huang, C., & Li, J. (2018). The Long Non-coding RNA MEG3/miR-let-7c-5p Axis Regulates Ethanol-Induced Hepatic Steatosis and Apoptosis by Targeting NLRC5. Frontiers in Pharmacology, 9, Article 302. https://doi.org/10.3389/fphar.2018.00302
Zhang, L., Yang, Z., Trottier, J., Barbier, O., & Wang, L. (2017). Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology, 65(2), 604-615. https://doi.org/10.1002/hep.28882
Abaturov, A. E., Stepanov, Yu. M., & Zavgorodnyaya, N. Yu. (2019). MikroRNK pri nealkogol'noi zhirovoi bolezni pecheni u detei [MicroRNA in children with non-alcoholic fatty liver disease]. Dominanta Print. [in Russian].
Chen, Y., Li, Z., Chen, X., & Zhang, S. (2021). Long non-coding RNAs: From disease code to drug role. Acta Pharmaceutica Sinica B, 11(2), 340-354. https://doi.org/10.1016/j.apsb.2020.10.001
Chen, P. Y., Hsieh, P. L., Peng, C. Y., Liao, Y. W., Yu, C. H., & Yu, C. C. (2021). LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. Journal of the Formosan Medical Association, 120(4), 1137-1142. https://doi.org/10.1016/j.jfma.2020.09.006
Ye, W., Ni, Z., Yicheng, S., Pan, H., Huang, Y., Xiong, Y., & Liu, T. (2019). Anisomycin inhibits angiogenesis in ovarian cancer by attenuating the molecular sponge effect of the lncRNA Meg3/miR 421/PDGFRA axis. International Journal of Oncology, 55(6), 1296-1312. https://doi.org/10.3892/ijo.2019.4887
Zhang, Y., Fu, Y., Zheng, Y., Wen, Z., & Wang, C. (2020). Identification of differentially expressed mRNA and the Hub mRNAs modulated by lncRNA Meg3 as a competing endogenous RNA in brown adipose tissue of mice on a high-fat diet. Adipocyte, 9(1), 346-358. https://doi.org/10.1080/21623945.2020.1789283
Cheng, Y., Mai, J., Hou, T., & Ping, J. (2016). MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3. Biochemical and Biophysical Research Communications, 474(1), 57-63. https://doi.org/10.1016/j.bbrc.2016.04.065
Infante-Menéndez, J., López-Pastor, A. R., González-López, P., Gómez-Hernández, A., & Escribano, O. (2020). The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants, 9(7), Article 607. https://doi.org/10.3390/antiox9070607
Zhang, Y., Gong, W., Dai, S., Huang, G., Shen, X., Gao, M., Xu, Z., Zeng, Y., & He, F. (2012). Downregulation of Human Farnesoid X Receptor by miR-421 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells. Molecular Cancer Research, 10(4), 516-522. https://doi.org/10.1158/1541-7786.MCR-11-0473
Daneshmoghadam, J., Omidifar, A., Akbari Dilmaghani, N., Karimi, Z., Emamgholipour, S., & Shanaki, M. (2021). The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. Journal of Clinical Laboratory Analysis, 35(5), Article e23741. https://doi.org/10.1002/jcla.23741
Braga, A. A., Bortolin, R. H., Graciano-Saldarriaga, M. E., Hirata, T. D., Cerda, A., de Freitas, R. C., Lin-Wang, H. T., Borges, J. B., França, J. I., Masi, L. N., Curi, R., Pithon-Curi, T. C., Sampaio, M. F., Castro, L. R., Bastos, G. M., Hirata, R. D., & Hirata, M. H. (2021). High serum miR-421 is associated with metabolic dysregulation and inflammation in patients with metabolic syndrome. Epigenomics, 13(6), 423-436. https://doi.org/10.2217/epi-2020-0247
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)