The use of near-infrared spectroscopy in the acute phase of hypoxic-ischemic encephalopathy in newborns

Authors

DOI:

https://doi.org/10.14739/2310-1210.2022.5.258677

Keywords:

near-infrared spectroscopy, hemodynamics, acute kidney injury, newborn, perfusion

Abstract

Detection of new markers of renal hypoperfusion in full-term infants during therapeutic cooling in moderate or severe hypoxic-ischemic encephalopathy to prevent the progression of acute kidney injury (AKI).

Aim. To evaluate the significance of using continuous peripheral NIRS monitoring in full-term infants with hypoxic-ischemic encephalopathy for early detection of renal hypoperfusion against the background of prophylactic use of methylxanthines.

Materials and methods. A prospective randomized controlled trial was conducted from 2019 to 2022 on the basis of the Neonatal Intensive Care Department of the Zaporizhzhia Regional Clinical Children’s Hospital. We included 50 full-term infants who underwent a program of total therapeutic hypothermia for moderate or severe hypoxic-ischemic encephalopathy. The infants were divided into 2 groups, each receiving methylxanthine to prevent the progression of AKI. Continuous NIRS monitoring of renal and brain tissues was performed throughout the cooling phase and until the end of the warming period. The relationship between NIRS and the development of AKI, which was determined according to the modified neonatal scale KDIGO (2012) by increasing serum creatinine and decreasing urine output during the first 5 days, was studied.

Results. NIRS monitoring revealed that changes in cerebral CrSO2 were observed somewhat earlier than renal RrSO2, as the kidneys were less susceptible to autoregulation and perfusion changes than the brain. The level of CrSO2 was identical in 2 groups and did not change after the administration of caffeine citrate or theophylline. The average peripheral renal saturation rates were slightly higher than CrSO2 and tended to increase during the observation period due to the development of renal reperfusion after hypoxia. While the level of renal oxygen extraction decreased. The results obtained indicated that the warming period was characterized by normalization of perfusion, increase in regional renal saturation and decrease in renal oxygen excretion. In general, acute kidney injury in stage I developed in 4 (8.00 %) newborns, and stage II – in 1 (2.00 %), which was equivalent in both study groups (P = 0.8009; U = 299.00). Instead, the other children had stage 0 – 45 (90.00 %). None of the neonates had stage III according to KDIGO (2012) and required renal replacement therapy.

Conclusions. The combined use of methylxanthines and the maintenance of optimal postnatal hemodynamics through NIRS diagnostics are vital for the prevention and treatment of acute kidney injury in neonates with moderate or severe hypoxic-ischemic encephalopathy.

Author Biographies

L. S. Stryzhak, Zaporizhzhia State Medical University, Ukraine

MD, PhD Student of the Department of Pediatric Surgery and Anesthesiology

I. O. Anikin, Zaporizhzhia State Medical University, Ukraine

MD, PhD, Associate Professor of the Department of Pediatric Surgery and Anesthesiology

References

Lawn, J., Shibuya, K., & Stein, C. (2005). No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bulletin of the World Health Organization, 83(6), 409-417.

Shankaran, S., Laptook, A. R., Pappas, A., McDonald, S. A., Das, A., Tyson, J. E., Poindexter, B. B., Schibler, K., Bell, E. F., Heyne, R. J., Pedroza, C., Bara, R., Van Meurs, K. P., Huitema, C. M. P., Grisby, C., Devaskar, U., Ehrenkranz, R. A., Harmon, H. M., Chalak, L. F., . . . Higgins, R. D. (2017). Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy. JAMA, 318(1), 57. https://doi.org/10.1001/jama.2017.7218

Gunn, A. J., & Battin, M. (2019). Towards faster studies of neonatal encephalopathy. The Lancet. Neurology, 18(1), 21-22. https://doi.org/10.1016/S1474-4422(18)30370-3

Cornette, L. (2012). Therapeutic hypothermia in neonatal asphyxia. Facts, views & vision in ObGyn, 4(2), 133-139.

Shankaran, S., Pappas, A., McDonald, S. A., Vohr, B. R., Hintz, S. R., Yolton, K., Gustafson, K. E., Leach, T. M., Green, C., Bara, R., Petrie Huitema, C. M., Ehrenkranz, R. A., Tyson, J. E., Das, A., Hammond, J., Peralta-Carcelen, M., Evans, P. W., Heyne, R. J., Wilson-Costello, D. E., Vaucher, Y. E., … Eunice Kennedy Shriver NICHD Neonatal Research Network (2012). Childhood outcomes after hypothermia for neonatal encephalopathy. The New England journal of medicine, 366(22), 2085-2092. https://doi.org/10.1056/NEJMoa1112066

Polglase, G. R., Ong, T., & Hillman, N. H. (2016). Cardiovascular Alterations and Multiorgan Dysfunction After Birth Asphyxia. Clinics in perinatology, 43(3), 469-483. https://doi.org/10.1016/j.clp.2016.04.006

Kaur, S., Jain, S., Saha, A., Chawla, D., Parmar, V. R., Basu, S., & Kaur, J. (2011). Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Annals of Tropical Paediatrics, 31(2), 129-134. https://doi.org/10.1179/146532811x12925735813922

LaRosa, D. A., Ellery, S. J., Walker, D. W., & Dickinson, H. (2017). Understanding the Full Spectrum of Organ Injury Following Intrapartum Asphyxia. Frontiers in pediatrics, 5, 16. https://doi.org/10.3389/fped.2017.00016

Mintzer, J. P., & Moore, J. E. (2019). Regional tissue oxygenation monitoring in the neonatal intensive care unit: evidence for clinical strategies and future directions. Pediatric Research, 86(3), 296-304. https://doi.org/10.1038/s41390-019-0466-9

Lemmers, P. M., Benders, M. J., D'Ascenzo, R., Zethof, J., Alderliesten, T., Kersbergen, K. J., Isgum, I., de Vries, L. S., Groenendaal, F., & van Bel, F. (2016). Patent Ductus Arteriosus and Brain Volume. Pediatrics, 137(4), e20153090. https://doi.org/10.1542/peds.2015-3090

Balegar, K. K., Stark, M. J., Briggs, N., & Andersen, C. C. (2014). Early Cerebral Oxygen Extraction and the Risk of Death or Sonographic Brain Injury in Very Preterm Infants. The Journal of Pediatrics, 164(3), 475-480.e1. https://doi.org/10.1016/j.jpeds.2013.10.041

Toet, M. C., & Lemmers, P. M. (2009). Brain monitoring in neonates. Early Human Development, 85(2), 77-84. https://doi.org/10.1016/j.earlhumdev.2008.11.007

Van Bel, F., & Mintzer, J. P. (2018). Monitoring cerebral oxygenation of the immature brain: a neuroprotective strategy? Pediatric Research, 84(2), 159-164. https://doi.org/10.1038/s41390-018-0026-8

Korček, P., Straňák, Z., ŠIrc, J., & Naulaers, G. (2017). The role of near-infrared spectroscopy monitoring in preterm infants. Journal of Perinatology, 37(10), 1070-1077. https://doi.org/10.1038/jp.2017.60

Escourrou, G., Renesme, L., Zana, E., Rideau, A., Marcoux, M. O., Lopez, E., Gascoin, G., Kuhn, P., Tourneux, P., Guellec, I., & Flamant, C. (2017). How to assess hemodynamic status in very preterm newborns in the first week of life? Journal of Perinatology, 37(9), 987-993. https://doi.org/10.1038/jp.2017.57

Batton, B. (2020). Neonatal Blood Pressure Standards. Clinics in Perinatology, 47(3), 469-485. https://doi.org/10.1016/j.clp.2020.05.008

Hellström-Westas, L., RoséN, I., De Vries, L., & Greisen, G. (2006). Amplitude-integrated EEG Classification and Interpretation in Preterm and Term Infants. NeoReviews, 7(2), e76-e87. https://doi.org/10.1542/neo.7-2-e76

Alderliesten, T., Dix, L., Baerts, W., Caicedo, A., Van Huffel, S., Naulaers, G., Groenendaal, F., Van Bel, F., & Lemmers, P. (2015). Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatric Research, 79(1), 55-64. https://doi.org/10.1038/pr.2015.186

Lalan, S. P., & Warady, B. A. (2015). Discrepancies in the normative neonatal blood pressure reference ranges. Blood Pressure Monitoring, 20(4), 171-177. https://doi.org/10.1097/mbp.0000000000000116

Rabe, H., Bhatt-Mehta, V., Bremner, S. A., Ahluwalia, A., Mcfarlane, R., Baygani, S., Batton, B., Klein, A., Ergenekon, E., Koplowitz, L. P., Dempsey, E., Apele-Freimane, D., Iwami, H., Dionne, J. M., Rabe, H., Bhatt-Mehta, V., Bremner, S. A., Baygani, S., Batton, B., . . . Dionne, J. M. (2021). Antenatal and perinatal factors influencing neonatal blood pressure: a systematic review. Journal of Perinatology, 41(9), 2317-2329. https://doi.org/10.1038/s41372-021-01169-5

Lee, J. K., Poretti, A., Perin, J., Huisman, T. A., Parkinson, C., Chavez-Valdez, R., O’Connor, M., Reyes, M., Armstrong, J., Jennings, J. M., Gilmore, M. M., Koehler, R. C., Northington, F. J., & Tekes, A. (2016). Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury. Developmental Neuroscience, 39(1-4), 248-256. https://doi.org/10.1159/000452833

Carrasco, M., Perin, J., Jennings, J. M., Parkinson, C., Gilmore, M. M., Chavez-Valdez, R., Massaro, A. N., Koehler, R. C., Northington, F. J., Tekes, A., & Lee, J. K. (2018). Cerebral Autoregulation and Conventional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. Pediatric Neurology, 82, 36-43. https://doi.org/10.1016/j.pediatrneurol.2018.02.004

Tekes, A., Poretti, A., Scheurkogel, M. M., Huisman, T. A. G. M., Howlett, J. A., Alqahtani, E., Lee, J. H., Parkinson, C., Shapiro, K., Chung, S. E., Jennings, J. M., Gilmore, M. M., Hogue, C. W., Martin, L. J., Koehler, R. C., Northington, F. J., & Lee, J. K. (2014). Apparent Diffusion Coefficient Scalars Correlate with Near-Infrared Spectroscopy Markers of Cerebrovascular Autoregulation in Neonates Cooled for Perinatal Hypoxic-Ischemic Injury. American Journal of Neuroradiology, 36(1), 188-193. https://doi.org/10.3174/ajnr.a4083

Howlett, J. A., Northington, F. J., Gilmore, M. M., Tekes, A., Huisman, T. A., Parkinson, C., Chung, S. E., Jennings, J. M., Jamrogowicz, J. J., Larson, A. C., Lehmann, C. U., Jackson, E., Brady, K. M., Koehler, R. C., & Lee, J. K. (2013). Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic–ischemic encephalopathy. Pediatric Research, 74(5), 525-535. https://doi.org/10.1038/pr.2013.132

Montaldo, P., De Leonibus, C., Giordano, L., De Vivo, M., & Giliberti, P. (2015). Cerebral, renal and mesenteric regional oxygen saturation of term infants during transition. Journal of Pediatric Surgery, 50(8), 1273-1277. https://doi.org/10.1016/j.jpedsurg.2015.04.004

Bailey, S. M., Hendricks-Munoz, K. D., & Mally, P. (2014). Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns. American journal of perinatology, 31(4), 339-344. https://doi.org/10.1055/s-0033-1349894

Chock, V. Y., Frymoyer, A., Yeh, C. G., & Van Meurs, K. P. (2018). Renal Saturation and Acute Kidney Injury in Neonates with Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia. The Journal of Pediatrics, 200, 232-239.e1. https://doi.org/10.1016/j.jpeds.2018.04.076

Wu, T. W., Tamrazi, B., Soleymani, S., Seri, I., & Noori, S. (2018). Hemodynamic Changes During Rewarming Phase of Whole-Body Hypothermia Therapy in Neonates with Hypoxic-Ischemic Encephalopathy. The Journal of Pediatrics, 197, 68-74.e2. https://doi.org/10.1016/j.jpeds.2018.01.067

Pinti, P., Siddiqui, M. F., Levy, A. D., Jones, E., & Tachtsidis, I. (2021). An analysis framework for the integration of broadband NIRS and EEG to assess neurovascular and neurometabolic coupling. Scientific reports, 11(1), 3977. https://doi.org/10.1038/s41598-021-83420-9

Chiarelli, A. M., Zappasodi, F., Di Pompeo, F., & Merla, A. (2017). Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics, 4(4), 041411. https://doi.org/10.1117/1.NPh.4.4.041411

Published

2022-10-22

How to Cite

1.
Stryzhak LS, Anikin IO. The use of near-infrared spectroscopy in the acute phase of hypoxic-ischemic encephalopathy in newborns. Zaporozhye Medical Journal [Internet]. 2022Oct.22 [cited 2024Nov.14];24(5):565-73. Available from: http://zmj.zsmu.edu.ua/article/view/258677

Issue

Section

Original research