Extrapulmonary manifestations of coronavirus disease (COVID-19): current status (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2022.5.259096Keywords:
coronavirus disease COVID-19, viral infection, extrapulmonary manifestationsAbstract
The aim of the study is to analyze the literature data on modern views concerning extrapulmonary manifestations of coronavirus disease (COVID-19).
Based on the analysis of current publications, the article analyzes the clinical manifestations of coronavirus disease (COVID-19) as a multisystem disorder with two main types of clinical manifestations, namely pulmonary and extrapulmonary. Determining pathogenetic mechanisms of extrapulmonary symptoms are, on the one hand, the tropism of SARS-CoV-2 to ACE2 receptors, expressed not only by alveolar epithelial type II cells, but also by cells of the heart, nervous system, vascular endothelium, small and large intestine, basal layer cells of the epidermis, cells of endocrine organs, etc., and on the other hand, immune-dependent mechanisms, in particular the development of “cytokine storm”.
It is shown that the spectrum of extrapulmonary manifestations of COVID-19 is very wide, and clinical manifestations are characterized by significant polymorphism. Extrapulmonary symptoms of COVID-19 were analyzed considering the organs of the gastrointestinal tract, nervous, cardiovascular and endocrine systems, skin and others. Attention is drawn to a certain association between definite extrapulmonary manifestations and the severity of COVID-19 course.
Thus, particular extrapulmonary manifestations are associated with a milder course of COVID-19 (anosmia, dysgeusia, etc.), others, vice versa, occur in severe disease (damage to liver, kidney, heart, pancreas). In addition, some extrapulmonary manifestations, especially of the nervous system, may remain in patients even after an acute period of the disease. Some extrapulmonary manifestations, which are currently described in a small number of patients, are also reviewed.
Conclusions. COVID-19 is characterized by a wide range and high frequency of extrapulmonary manifestations, which is explained by both the direct action of SARS-CoV-2 and immune-dependent mechanisms. Some extrapulmonary manifestations are associated with a milder course of COVID-19, others, on the contrary, occur in severe disease.
References
Elrobaa, I. H., & New, K. J. (2021). COVID-19: Pulmonary and Extra Pulmonary Manifestations. Frontiers in public health, 9, 711616. https://doi.org/10.3389/fpubh.2021.711616
Lee, I. C., Huo, T. I., & Huang, Y. H. (2020). Gastrointestinal and liver manifestations in patients with COVID-19. Journal of the Chinese Medical Association : JCMA, 83(6), 521-523. https://doi.org/10.1097/JCMA.0000000000000319
Gupta, A., Madhavan, M. V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T. S., Bikdeli, B., Ahluwalia, N., Ausiello, J. C., Wan, E. Y., Freedberg, D. E., Kirtane, A. J., Parikh, S. A., Maurer, M. S., Nordvig, A. S., Accili, D., Bathon, J. M., Mohan, S., Bauer, K. A., Leon, M. B., … Landry, D. W. (2020). Extrapulmonary manifestations of COVID-19. Nature medicine, 26(7), 1017-1032. https://doi.org/10.1038/s41591-020-0968-3
Mao, R., Qiu, Y., He, J. S., Tan, J. Y., Li, X. H., Liang, J., Shen, J., Zhu, L. R., Chen, Y., Iacucci, M., Ng, S. C., Ghosh, S., & Chen, M. H. (2020). Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. The lancet. Gastroenterology & hepatology, 5(7), 667-678. https://doi.org/10.1016/S2468-1253(20)30126-6
Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., Chang, J., Hong, C., Zhou, Y., Wang, D., Miao, X., Li, Y., & Hu, B. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA neurology, 77(6), 683-690. https://doi.org/10.1001/jamaneurol.2020.1127
Kokou-Kpolou, C. K., Megalakaki, O., Laimou, D., & Kousouri, M. (2020). Insomnia during COVID-19 pandemic and lockdown: Prevalence, severity, and associated risk factors in French population. Psychiatry research, 290, 113128. https://doi.org/10.1016/j.psychres.2020.113128
Tan, Y. K., Goh, C., Leow, A., Tambyah, P. A., Ang, A., Yap, E. S., Tu, T. M., Sharma, V. K., Yeo, L., Chan, B., & Tan, B. (2020). COVID-19 and ischemic stroke: a systematic review and meta-summary of the literature. Journal of thrombosis and thrombolysis, 50(3), 587-595. https://doi.org/10.1007/s11239-020-02228-y
Goren, A., McCoy, J., Wambier, C. G., Vano-Galvan, S., Shapiro, J., Dhurat, R., Washenik, K., & Lotti, T. (2020). What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatologic therapy, 33(4), e13365. https://doi.org/10.1111/dth.13365
Kabbani, N., & Olds, J. L. (2020). Does COVID19 Infect the Brain? If So, Smokers Might Be at a Higher Risk. Molecular pharmacology, 97(5), 351-353. https://doi.org/10.1124/molpharm.120.000014
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of medicine, 14(2), 185-192. https://doi.org/10.1007/s11684-020-0754-0
Puliatti, S., Eissa, A., Eissa, R., Amato, M., Mazzone, E., Dell'Oglio, P., Sighinolfi, M. C., Zoeir, A., Micali, S., Bianchi, G., Patel, V., Wiklund, P., Coelho, R. F., Bernhard, J. C., Dasgupta, P., Mottrie, A., & Rocco, B. (2020). COVID-19 and urology: a comprehensive review of the literature. BJU international, 125(6), E7-E14. https://doi.org/10.1111/bju.15071
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of medicine, 14(2), 185-192. https://doi.org/10.1007/s11684-020-0754-0
Tian, Y., Rong, L., Nian, W., & He, Y. (2020). Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Alimentary pharmacology & therapeutics, 51(9), 843-851. https://doi.org/10.1111/apt.15731
Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., & Shan, H. (2020). Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 158(6), 1831-1833.e3. https://doi.org/10.1053/j.gastro.2020.02.055
Wan, Y., Li, J., Shen, L., Zou, Y., Hou, L., Zhu, L., Faden, H. S., Tang, Z., Shi, M., Jiao, N., Li, Y., Cheng, S., Huang, Y., Wu, D., Xu, Z., Pan, L., Zhu, J., Yan, G., Zhu, R., & Lan, P. (2020). Enteric involvement in hospitalised patients with COVID-19 outside Wuhan. The Lancet. Gastroenterology & hepatology, 5(6), 534-535. https://doi.org/10.1016/S2468-1253(20)30118-7
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323(11), 1061-1069. https://doi.org/10.1001/jama.2020.1585
Sivandzadeh, G. R., Askari, H., Safarpour, A. R., Ejtehadi, F., Raeis-Abdollahi, E., Vaez Lari, A., Abazari, M. F., Tarkesh, F., & Bagheri Lankarani, K. (2021). COVID-19 infection and liver injury: Clinical features, biomarkers, potential mechanisms, treatment, and management challenges. World journal of clinical cases, 9(22), 6178-6200. https://doi.org/10.12998/wjcc.v9.i22.6178
Galanopoulos, M., Gkeros, F., Doukatas, A., Karianakis, G., Pontas, C., Tsoukalas, N., Viazis, N., Liatsos, C., & Mantzaris, G. J. (2020). COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World journal of gastroenterology, 26(31), 4579-4588. https://doi.org/10.3748/wjg.v26.i31.4579
Kumar-M, P., Mishra, S., Jha, D. K., Shukla, J., Choudhury, A., Mohindra, R., Mandavdhare, H. S., Dutta, U., & Sharma, V. (2020). Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. Hepatology international, 14(5), 711-722. https://doi.org/10.1007/s12072-020-10071-9
Riabokon, O. V., Tumanska, L. M., Cherkaskyi, V. V., & Riabokon, Yu. Yu. (2021). Clinical and pathomorphological analysis of deaths from COVID-19 in 2020. Pathologia, 18(3), 269-277. https://doi.org/10.14739/2310-1237.2021.3.242247
Tao, Y., Tang, L. V., & Hu, Y. (2020). Treatments in the COVID-19 pandemic: an update on clinical trials. Expert opinion on emerging drugs, 25(2), 81-88. https://doi.org/10.1080/14728214.2020.1773431
Steardo, L., Steardo, L., Jr, Zorec, R., & Verkhratsky, A. (2020). Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta physiologica, 229(3), e13473. https://doi.org/10.1111/apha.13473
Han, Y., Yuan, K., Wang, Z., Liu, W. J., Lu, Z. A., Liu, L., Shi, L., Yan, W., Yuan, J. L., Li, J. L., Shi, J., Liu, Z. C., Wang, G. H., Kosten, T., Bao, Y. P., & Lu, L. (2021). Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions. Translational psychiatry, 11(1), 499. https://doi.org/10.1038/s41398-021-01629-8
Zanin, L., Saraceno, G., Panciani, P. P., Renisi, G., Signorini, L., Migliorati, K., & Fontanella, M. M. (2020). SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta neurochirurgica, 162(7), 1491-1494. https://doi.org/10.1007/s00701-020-04374-x
MacLean, M. A., Kamintsky, L., Leck, E. D., & Friedman, A. (2020). The potential role of microvascular pathology in the neurological manifestations of coronavirus infection. Fluids and barriers of the CNS, 17(1), 55. https://doi.org/10.1186/s12987-020-00216-1
Rogers, J. P., Chesney, E., Oliver, D., Pollak, T. A., McGuire, P., Fusar-Poli, P., Zandi, M. S., Lewis, G., & David, A. S. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet. Psychiatry, 7(7), 611-627. https://doi.org/10.1016/S2215-0366(20)30203-0
Varatharaj, A., Thomas, N., Ellul, M. A., Davies, N., Pollak, T. A., Tenorio, E. L., Sultan, M., Easton, A., Breen, G., Zandi, M., Coles, J. P., Manji, H., Al-Shahi Salman, R., Menon, D. K., Nicholson, T. R., Benjamin, L. A., Carson, A., Smith, C., Turner, M. R., Solomon, T., … CoroNerve Study Group (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. The Lancet. Psychiatry, 7(10), 875-882. https://doi.org/10.1016/S2215-0366(20)30287-X
Mohseni Afshar, Z., Babazadeh, A., Hasanpour, A., Barary, M., Sayad, B., Janbakhsh, A., Aryanian, Z., & Ebrahimpour, S. (2021). Dermatological manifestations associated with COVID-19: A comprehensive review of the current knowledge. Journal of medical virology, 93(10), 5756-5767. https://doi.org/10.1002/jmv.27187
Rentero, D., Juanes, A., Losada, C. P., Álvarez, S., Parra, A., Santana, V., Martí, I., & Urricelqui, J. (2020). New-onset psychosis in COVID-19 pandemic: a case series in Madrid. Psychiatry research, 290, 113097. https://doi.org/10.1016/j.psychres.2020.113097
Sedaghat, Z., & Karimi, N. (2020). Guillain Barre syndrome associated with COVID-19 infection: A case report. Journal of clinical neuroscience, 76, 233-235. https://doi.org/10.1016/j.jocn.2020.04.062
Jamiolkowski, D., Mühleisen, B., Müller, S., Navarini, A. A., Tzankov, A., & Roider, E. (2020). SARS-CoV-2 PCR testing of skin for COVID-19 diagnostics: a case report. Lancet, 396(10251), 598-599. https://doi.org/10.1016/S0140-6736(20)31754-2
Recalcati, S. (2020). Cutaneous manifestations in COVID-19: a first perspective. Journal of the European Academy of Dermatology and Venereology : JEADV, 34(5), e212-e213. https://doi.org/10.1111/jdv.16387
Tammaro, A., Adebanjo, G., Parisella, F. R., Pezzuto, A., & Rello, J. (2020). Cutaneous manifestations in COVID-19: the experiences of Barcelona and Rome. Journal of the European Academy of Dermatology and Venereology : JEADV, 34(7), e306-e307. https://doi.org/10.1111/jdv.16530
Sachdeva, M., Gianotti, R., Shah, M., Bradanini, L., Tosi, D., Veraldi, S., Ziv, M., Leshem, E., & Dodiuk-Gad, R. P. (2020). Cutaneous manifestations of COVID-19: Report of three cases and a review of literature. Journal of dermatological science, 98(2), 75-81. https://doi.org/10.1016/j.jdermsci.2020.04.011
Wambier, C. G., Vaño-Galván, S., McCoy, J., Gomez-Zubiaur, A., Herrera, S., Hermosa-Gelbard, Á., Moreno-Arrones, O. M., Jiménez-Gómez, N., González-Cantero, A., Fonda-Pascual, P., Segurado-Miravalles, G., Shapiro, J., Pérez-García, B., & Goren, A. (2020). Androgenetic alopecia present in the majority of patients hospitalized with COVID-19: The "Gabrin sign". Journal of the American Academy of Dermatology, 83(2), 680-682. https://doi.org/10.1016/j.jaad.2020.05.079
Neri, I., Guglielmo, A., Virdi, A., Gaspari, V., Starace, M., & Piraccini, B. M. (2020). The red half-moon nail sign: a novel manifestation of coronavirus infection. Journal of the European Academy of Dermatology and Venereology : JEADV, 34(11), e663-e665. https://doi.org/10.1111/jdv.16747
Naicker, S., Yang, C. W., Hwang, S. J., Liu, B. C., Chen, J. H., & Jha, V. (2020). The Novel Coronavirus 2019 epidemic and kidneys. Kidney international, 97(5), 824-828. https://doi.org/10.1016/j.kint.2020.03.001
Pei, G., Zhang, Z., Peng, J., Liu, L., Zhang, C., Yu, C., Ma, Z., Huang, Y., Liu, W., Yao, Y., Zeng, R., & Xu, G. (2020). Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. Journal of the American Society of Nephrology : JASN, 31(6), 1157-1165. https://doi.org/10.1681/ASN.2020030276
Li, X., Wang, L., Yan, S., Yang, F., Xiang, L., Zhu, J., Shen, B., & Gong, Z. (2020). Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. International journal of infectious diseases : IJID, 94, 128-132. https://doi.org/10.1016/j.ijid.2020.03.053
Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie, X. (2020). COVID-19 and the cardiovascular system. Nature reviews. Cardiology, 17(5), 259-260. https://doi.org/10.1038/s41569-020-0360-5
Kang, Y., Chen, T., Mui, D., Ferrari, V., Jagasia, D., Scherrer-Crosbie, M., Chen, Y., & Han, Y. (2020). Cardiovascular manifestations and treatment considerations in COVID-19. Heart, 106(15), 1132-1141. https://doi.org/10.1136/heartjnl-2020-317056
Sattar, Y., Ullah, W., Rauf, H., Virk, H., Yadav, S., Chowdhury, M., Connerney, M., Mamtani, S., Pahuja, M., Patel, R. D., Mir, T., Almas, T., Moussa Pacha, H., & Chadi Alraies, M. (2020). COVID-19 cardiovascular epidemiology, cellular pathogenesis, clinical manifestations and management. International journal of cardiology. Heart & vasculature, 29, 100589. https://doi.org/10.1016/j.ijcha.2020.100589
Deng, Q., Hu, B., Zhang, Y., Wang, H., Zhou, X., Hu, W., Cheng, Y., Yan, J., Ping, H., & Zhou, Q. (2020). Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. International journal of cardiology, 311, 116-121. https://doi.org/10.1016/j.ijcard.2020.03.087
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
Madjid, M., Safavi-Naeini, P., Solomon, S. D., & Vardeny, O. (2020). Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA cardiology, 5(7), 831-840. https://doi.org/10.1001/jamacardio.2020.1286
Lippi, G., Lavie, C. J., & Sanchis-Gomar, F. (2020). Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Progress in cardiovascular diseases, 63(3), 390-391. https://doi.org/10.1016/j.pcad.2020.03.001
Lala, A., Johnson, K. W., Januzzi, J. L., Russak, A. J., Paranjpe, I., Richter, F., Zhao, S., Somani, S., Van Vleck, T., Vaid, A., Chaudhry, F., De Freitas, J. K., Fayad, Z. A., Pinney, S. P., Levin, M., Charney, A., Bagiella, E., Narula, J., Glicksberg, B. S., Nadkarni, G., … Mount Sinai COVID Informatics Center (2020). Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. Journal of the American College of Cardiology, 76(5), 533-546. https://doi.org/10.1016/j.jacc.2020.06.007
Bode, B., Garrett, V., Messler, J., McFarland, R., Crowe, J., Booth, R., & Klonoff, D. C. (2020). Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of diabetes science and technology, 14(4), 813-821. https://doi.org/10.1177/1932296820924469
Li, J., Wang, X., Chen, J., Zuo, X., Zhang, H., & Deng, A. (2020). COVID-19 infection may cause ketosis and ketoacidosis. Diabetes, obesity & metabolism, 22(10), 1935-1941. https://doi.org/10.1111/dom.14057
Chen, M., Zhou, W., & Xu, W. (2021). Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid, 31(1), 8-11. https://doi.org/10.1089/thy.2020.0363
Heidarpour, M., Vakhshoori, M., Abbasi, S., Shafie, D., & Rezaei, N. (2020). Adrenal insufficiency in coronavirus disease 2019: a case report. Journal of medical case reports, 14(1), 134. https://doi.org/10.1186/s13256-020-02461-2
Alzahrani, A. S., Mukhtar, N., Aljomaiah, A., Aljamei, H., Bakhsh, A., Alsudani, N., Elsayed, T., Alrashidi, N., Fadel, R., Alqahtani, E., Raef, H., Butt, M. I., & Sulaiman, O. (2021). The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocrine practice, 27(2), 83-89. https://doi.org/10.1016/j.eprac.2020.10.014
Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M., & Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Molecular systems biology, 16(7), e9610. https://doi.org/10.15252/msb.20209610
Wang, Z., & Xu, X. (2020). scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells, 9(4), 920. https://doi.org/10.3390/cells9040920
Okçelik S. (2021). COVID-19 pneumonia causes lower testosterone levels. Andrologia, 53(1), e13909. https://doi.org/10.1111/and.13909
Yang, M., Chen, S., Huang, B., Zhong, J. M., Su, H., Chen, Y. J., Cao, Q., Ma, L., He, J., Li, X. F., Li, X., Zhou, J. J., Fan, J., Luo, D. J., Chang, X. N., Arkun, K., Zhou, M., & Nie, X. (2020). Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. European urology focus, 6(5), 1124-1129. https://doi.org/10.1016/j.euf.2020.05.009
Golden, T. N., & Simmons, R. A. (2020). Maternal and neonatal response to COVID-19. American journal of physiology. Endocrinology and metabolism, 319(2), E315-E319. https://doi.org/10.1152/ajpendo.00287.2020
Algarroba, G. N., Rekawek, P., Vahanian, S. A., Khullar, P., Palaia, T., Peltier, M. R., Chavez, M. R., & Vintzileos, A. M. (2020). Visualization of severe acute respiratory syndrome coronavirus 2 invading the human placenta using electron microscopy. American journal of obstetrics and gynecology, 223(2), 275-278. https://doi.org/10.1016/j.ajog.2020.05.023
Patanè, L., Morotti, D., Giunta, M. R., Sigismondi, C., Piccoli, M. G., Frigerio, L., Mangili, G., Arosio, M., & Cornolti, G. (2020). Vertical transmission of coronavirus disease 2019: severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019-positive mothers and neonates at birth. American journal of obstetrics & gynecology MFM, 2(3), 100145. https://doi.org/10.1016/j.ajogmf.2020.100145
Li, M., Chen, L., Zhang, J., Xiong, C., & Li, X. (2020). The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PloS one, 15(4), e0230295. https://doi.org/10.1371/journal.pone.0230295
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-López, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M., Barnes, J. L., & HCA Lung Biological Network (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature medicine, 26(5), 681-687. https://doi.org/10.1038/s41591-020-0868-6
Huntley, B., Huntley, E. S., Di Mascio, D., Chen, T., Berghella, V., & Chauhan, S. P. (2020). Rates of Maternal and Perinatal Mortality and Vertical Transmission in Pregnancies Complicated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Co-V-2) Infection: A Systematic Review. Obstetrics and gynecology, 136(2), 303-312. https://doi.org/10.1097/AOG.0000000000004010
Yoon, S. H., Kang, J. M., & Ahn, J. G. (2020). Clinical outcomes of 201 neonates born to mothers with COVID-19: a systematic review. European review for medical and pharmacological sciences, 24(14), 7804-7815. https://doi.org/10.26355/eurrev_202007_22285
Chen, L., Liu, M., Zhang, Z., Qiao, K., Huang, T., Chen, M., Xin, N., Huang, Z., Liu, L., Zhang, G., & Wang, J. (2020). Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease. The British journal of ophthalmology, 104(6), 748-751. https://doi.org/10.1136/bjophthalmol-2020-316304
Chen, L., Deng, C., Chen, X., Zhang, X., Chen, B., Yu, H., Qin, Y., Xiao, K., Zhang, H., & Sun, X. (2020). Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta ophthalmologica, 98(8), e951-e959. https://doi.org/10.1111/aos.14472
Zhang, X., Chen, X., Chen, L., Deng, C., Zou, X., Liu, W., Yu, H., Chen, B., & Sun, X. (2020). The evidence of SARS-CoV-2 infection on ocular surface. The ocular surface, 18(3), 360-362. https://doi.org/10.1016/j.jtos.2020.03.010
Wu, P., Duan, F., Luo, C., Liu, Q., Qu, X., Liang, L., & Wu, K. (2020). Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA ophthalmology, 138(5), 575-578. https://doi.org/10.1001/jamaophthalmol.2020.1291
Paliwal, V. K., Garg, R. K., Gupta, A., & Tejan, N. (2020). Neuromuscular presentations in patients with COVID-19. Neurological sciences, 41(11), 3039-3056. https://doi.org/10.1007/s10072-020-04708-8
Disser, N. P., De Micheli, A. J., Schonk, M. M., Konnaris, M. A., Piacentini, A. N., Edon, D. L., Toresdahl, B. G., Rodeo, S. A., Casey, E. K., & Mendias, C. L. (2020). Musculoskeletal Consequences of COVID-19. The Journal of bone and joint surgery. American volume, 102(14), 1197-1204. https://doi.org/10.2106/JBJS.20.00847
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)