Selenium plasma levels in children with Helicobacter pylori-associated diseases of the upper gastrointestinal tract

Authors

DOI:

https://doi.org/10.14739/2310-1210.2023.3.272785

Keywords:

children, H. pylori-associated diseases, selenium

Abstract

Despite the success of the treatment of infected individuals, Helicobacter pylori infection remains the most common human bacterial pathogen, infecting half of the world’s population. In a large part of people, H. pylori causes gastroduodenal diseases, in particular, chronic antral gastritis and ulcer disease. The possible role of selenium in the course of chronic inflammatory H. pylori-associated pathology of the upper gastrointestinal tract in children has not yet been fully investigated and understood.

The aim is to determine selenium plasma levels in children with Helicobacter pylori-associated diseases of the upper gastrointestinal tract.

Materials and methods. The study included 135 school-age children with Helicobacter pylori-associated diseases of the upper gastrointestinal tract, who made up the main study group (55 children with chronic gastritis (CG), 57 children with chronic gastroduodenitis (CGD), 23 children with duodenal ulcer (DU), and 20 practically healthy age-matched children were the comparison group. Quantitative measurements of plasma selenium were performed using inductively coupled plasma mass spectrometry (MS-ICP) on an Optima 2000 DV spectrometer (Perkin Elmer, USA).

Results. The lowest level of plasma selenium was registered in children with H. pylori-negative DU (67.81 ± 2.67 μg/l), while in children with H. pylori-associated DU, its level was higher – 73.56 ± 2.34 μg/l (p < 0.05), however, it did not reach the level in children of the comparison group. A similar direction of changes in the selenium plasma concentration was observed in children with CGD: higher levels of selenium were detected in children with H. pylori-positive CGD compared to H. pylori-negative CGD (75.61 ± 2.48 μg/l and 70.99 ± 2.31 μg/l, respectively, p < 0.05).

Conclusions. Significantly lower levels of plasma selenium in children with chronic destructive-inflammatory diseases of the upper gastrointestinal tract were found, which could be explained by the acute phase of inflammation in the mucous membrane of the stomach and duodenum resulting in a decrease in selenium absorption. In H. pylori-positive children, the level of selenium was significantly higher compared to H. pylori-negative children indicating a possible role of selenium in the pathogenesis and further progression of H. pylori-associated diseases.

Author Biographies

T. V. Sorokman, Bukovinian State Medical University, Chernivtsi, Ukraine

MD, PhD, DSc, Professor of the Department of Pediatrics and Medical Genetics

I. S. Sokolnyk, Bukovinian State Medical University, Chernivtsi, Ukraine

5th year student

References

Georgopoulos, S. D., Michopoulos, S., Rokkas, T., Apostolopoulos, P., Giamarellos, E., Kamberoglou, D., Mentis, A., & Triantafyllou, K. (2020). Hellenic consensus on Helicobacter pylori infection. Annals of gastroenterology, 33(2), 105-124. https://doi.org/10.20524/aog.2020.0446

Sabbagh, P., Javanian, M., Koppolu, V., Vasigala, V. R., & Ebrahimpour, S. (2019). Helicobacter pylori infection in children: an overview of diagnostic methods. European journal of clinical microbiology & infectious diseases, 38(6), 1035-1045. https://doi.org/10.1007/s10096-019-03502-5

Okuda, M., Lin, Y., & Kikuchi, S. (2019). Helicobacter pylori Infection in Children and Adolescents. Advances in experimental medicine and biology, 1149, 107-120. https://doi.org/10.1007/5584_2019_361

Weigt, J., Malfertheiner, P., Canbay, A., Haybaeck, J., Bird-Lieberman, E., & Link, A. (2020). Blue Light Imaging and Linked Color Imaging for the Characterization of Mucosal Changes in Chronic Gastritis: A Clinicians View and Brief Technical Report. Digestive diseases, 38(1), 9-14. https://doi.org/10.1159/000501265

Cai, Q., Shi, P., Yuan, Y., Peng, J., Ou, X., Zhou, W., Li, J., Su, T., Lin, L., Cai, S., He, Y., & Xu, J. (2021). Inflammation-Associated Senescence Promotes Helicobacter pylori-Induced Atrophic Gastritis. Cellular and molecular gastroenterology and hepatology, 11(3), 857-880. https://doi.org/10.1016/j.jcmgh.2020.10.015

Tang, L., Tang, B., Lei, Y., Yang, M., Wang, S., Hu, S., Xie, Z., Liu, Y., Vlodavsky, I., & Yang, S. (2021). Helicobacter pylori-Induced Heparanase Promotes H. pylori Colonization and Gastritis. Frontiers in immunology, 12, 675747. https://doi.org/10.3389/fimmu.2021.675747

Dhar, P., Ng, G. Z., & Sutton, P. (2016). How host regulation of Helicobacter pylori-induced gastritis protects against peptic ulcer disease and gastric cancer. American journal of physiology. Gastrointestinal and liver physiology, 311(3), G514-G520. https://doi.org/10.1152/ajpgi.00146.2016

Zamani, M., Ebrahimtabar, F., Zamani, V., Miller, W. H., Alizadeh-Navaei, R., Shokri-Shirvani, J., & Derakhshan, M. H. (2018). Systematic review with meta-analysis: the worldwide prevalence of Helicobacter pylori infection. Alimentary pharmacology & therapeutics, 47(7), 868-876. https://doi.org/10.1111/apt.14561

Reshetnyak, V. I., & Reshetnyak, T. M. (2017). Significance of dormant forms of Helicobacter pylori in ulcerogenesis. World journal of gastroenterology, 23(27), 4867-4878. https://doi.org/10.3748/wjg.v23.i27.4867

Rosu, O. M., Gimiga, N., Stefanescu, G., Anton, C., Paduraru, G., Tataranu, E., Balan, G. G., & Diaconescu, S. (2022). Helicobacter pylori Infection in a Pediatric Population from Romania: Risk Factors, Clinical and Endoscopic Features and Treatment Compliance. Journal of clinical medicine, 11(9), 2432. https://doi.org/10.3390/jcm11092432

Shi, H., Li, Y., Dong, C., Si, G., Xu, Y., Peng, M., & Li, Y. (2022). Helicobacter pylori infection and the progression of atherosclerosis: A systematic review and meta-analysis. Helicobacter, 27(1), e12865. https://doi.org/10.1111/hel.12865

Borka Balas, R., Meliț, L. E., & Mărginean, C. O. (2022). Worldwide Prevalence and Risk Factors of Helicobacter pylori Infection in Children. Children (Basel, Switzerland), 9(9), 1359. https://doi.org/10.3390/children9091359

Mărginean, C. D., Mărginean, C. O., & Meliț, L. E. (2022). Helicobacter pylori-Related Extraintestinal Manifestations-Myth or Reality. Children (Basel, Switzerland), 9(9), 1352. https://doi.org/10.3390/children9091352

Yu, J. H., Zhao, Y., Wang, X. F., & Xu, Y. C. (2022). Evaluation of Anti-Helicobacter pylori IgG Antibodies for the Detection of Helicobacter pylori Infection in Different Populations. Diagnostics (Basel, Switzerland), 12(5), 1214. https://doi.org/10.3390/diagnostics12051214

Suzuki, S., Esaki, M., Kusano, C., Ikehara, H., & Gotoda, T. (2019). Development of Helicobacter pylori treatment: How do we manage antimicrobial resistance?. World journal of gastroenterology, 25(16), 1907-1912. https://doi.org/10.3748/wjg.v25.i16.1907

Calado, C. R. C. (2022). Antigenic and conserved peptides from diverse Helicobacter pylori antigens. Biotechnology letters, 44(3), 535-545. https://doi.org/10.1007/s10529-022-03238-x

Galoș, F., Boboc, C., Ieșanu, M. I., Anghel, M., Ioan, A., Iana, E., Coșoreanu, M. T., & Boboc, A. A. (2023). Antibiotic Resistance and Therapeutic Efficacy of Helicobacter pylori Infection in Pediatric Patients-A Tertiary Center Experience. Antibiotics (Basel, Switzerland), 12(1), 146. https://doi.org/10.3390/antibiotics12010146

Xu, C., Wu, Y., & Xu, S. (2022). Association between Helicobacter pylori infection and growth outcomes in children: A meta-analysis. Helicobacter, 27(1), e12861. https://doi.org/10.1111/hel.12861

Ebrahimi, Z., Masoodi, M., Aslani, Z., Naghshi, S., Khalighi Sikaroudi, M., & Shidfar, F. (2022). Association between dietary antioxidant index and risk of Helicobacter pylori infection among adults: a case-control study. BMC gastroenterology, 22(1), 413. https://doi.org/10.1186/s12876-022-02488-3

Aslan, A., Karapinar, H. S., Kilicel, F., Boyacıoğlu, T., Pekin, C., Toprak, Ş. S., Cihan, M., & Yilmaz, B. S. (2023). Trace element levels in serum and gastric mucosa in patients with Helicobacter pylori positive and negative gastritis. Journal of trace elements in medicine and biology, 75, 127108. https://doi.org/10.1016/j.jtemb.2022.127108

Weisshof, R., & Chermesh, I. (2015). Micronutrient deficiencies in inflammatory bowel disease. Current opinion in clinical nutrition and metabolic care, 18(6), 576-581. https://doi.org/10.1097/MCO.0000000000000226

Ehrlich, S., Mark, A. G., Rinawi, F., Shamir, R., & Assa, A. (2020). Micronutrient Deficiencies in Children With Inflammatory Bowel Diseases. Nutrition in clinical practice, 35(2), 315-322. https://doi.org/10.1002/ncp.10373

Han, Y. M., Yoon, H., Lim, S., Sung, M. K., Shin, C. M., Park, Y. S., Kim, N., Lee, D. H., & Kim, J. S. (2017). Risk Factors for Vitamin D, Zinc, and Selenium Deficiencies in Korean Patients with Inflammatory Bowel Disease. Gut and liver, 11(3), 363-369. https://doi.org/10.5009/gnl16333

Wu, Z., Pan, D., Jiang, M., Sang, L., & Chang, B. (2021). Selenium-Enriched Lactobacillus acidophilus Ameliorates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Regulating Inflammatory Cytokines and Intestinal Microbiota. Frontiers in medicine, 8, 716816. https://doi.org/10.3389/fmed.2021.716816

Mojadadi, A., Au, A., Salah, W., Witting, P., & Ahmad, G. (2021). Role for Selenium in Metabolic Homeostasis and Human Reproduction. Nutrients, 13(9), 3256. https://doi.org/10.3390/nu13093256

Kieliszek, M., & Bano, I. (2022). Selenium as an important factor in various disease states - a review. EXCLI journal, 21, 948-966. https://doi.org/10.17179/excli2022-5137

Pecoraro, B. M., Leal, D. F., Frias-De-Diego, A., Browning, M., Odle, J., & Crisci, E. (2022). The health benefits of selenium in food animals: a review. Journal of animal science and biotechnology, 13(1), 58. https://doi.org/10.1186/s40104-022-00706-2

Ministry of Health of Ukraine. (2013, January 29). Pro zatverdzhennia unifikovanykh klinichnykh protokoliv medychnoi dopomohy ditiam iz zakhvoriuvanniamy orhaniv travlennia. : Nakaz MOZ Ukrainy vіd 29.01.2013 No. 59 [On approval of unified clinical protocols for medical care for children with diseases of the digestive organs (No. 59)]. https://zakononline.com.ua/documents/show/117384___678244

Waskito, L. A., & Yamaoka, Y. (2019). The Story of Helicobacter pylori: Depicting Human Migrations from the Phylogeography. Advances in experimental medicine and biology, 1149, 1-16. https://doi.org/10.1007/5584_2019_356

Morán-Serradilla, C., Angulo-Elizari, E., Henriquez-Figuereo, A., Sanmartín, C., Sharma, A. K., & Plano, D. (2022). Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses?. Metabolites, 12(9), 874. https://doi.org/10.3390/metabo12090874

Kieliszek, M. (2019). Selenium⁻Fascinating Microelement, Properties and Sources in Food. Molecules (Basel, Switzerland), 24(7), 1298. https://doi.org/10.3390/molecules24071298

Rayman, M. P. (2020). Selenium intake, status, and health: a complex relationship. Hormones (Athens, Greece), 19(1), 9-14. https://doi.org/10.1007/s42000-019-00125-5

Liu, H., Xiao, C., Qiu, T., Deng, J., Cheng, H., Cong, X., Cheng, S., Rao, S., & Zhang, Y. (2022). Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. Plants (Basel, Switzerland), 12(1), 44. https://doi.org/10.3390/plants12010044

Tinggi, U., & Perkins, A. V. (2022). Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients, 14(24), 5308. https://doi.org/10.3390/nu14245308

Sumner, S. E., Markley, R. L., & Kirimanjeswara, G. S. (2019). Role of Selenoproteins in Bacterial Pathogenesis. Biological trace element research, 192(1), 69-82. https://doi.org/10.1007/s12011-019-01877-2

Tsuji, P. A., Santesmasses, D., Lee, B. J., Gladyshev, V. N., & Hatfield, D. L. (2021). Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. International journal of molecular sciences, 23(1), 5. https://doi.org/10.3390/ijms23010005

Safarzad, M., Besharat, S., Salimi, S., Azarhoush, R., Behnampour, N., & Joshaghani, H. R. (2019). Association between selenium, cadmium, and arsenic levels and genetic polymorphisms in DNA repair genes (XRCC5, XRCC6) in gastric cancerous and non-cancerous tissue. Journal of trace elements in medicine and biology, 55, 89-95. https://doi.org/10.1016/j.jtemb.2019.06.003

Kudva, A. K., Shay, A. E., & Prabhu, K. S. (2015). Selenium and inflammatory bowel disease. American journal of physiology. Gastrointestinal and liver physiology, 309(2), G71-G77. https://doi.org/10.1152/ajpgi.00379.2014

Ustündağ, Y., Boyacioğlu, S., Haberal, A., Demirhan, B., & Bilezikçi, B. (2001). Plasma and gastric tissue selenium levels in patients with Helicobacter pylori infection. Journal of clinical gastroenterology, 32(5), 405-408. https://doi.org/10.1097/00004836-200105000-00009

Downloads

Published

2023-05-31

How to Cite

1.
Sorokman TV, Sokolnyk IS. Selenium plasma levels in children with Helicobacter pylori-associated diseases of the upper gastrointestinal tract. Zaporozhye Medical Journal [Internet]. 2023May31 [cited 2024Nov.25];25(3):220-4. Available from: http://zmj.zsmu.edu.ua/article/view/272785