Dentoalveolar anomalies and modern views on the mechanisms of local stress-modeling effect of orthodontic appliances on the periodontal tissues (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2023.6.281832Keywords:
mouth abnormalities, bracket system, periodontium, oxidative stress, bone remodeling, corrosion, lipid peroxidation, antioxidant systemAbstract
The aim of the study was to highlight the results of modern scientific developments in tracing the mechanisms of local stress-modeling effect of orthodontic appliances on the oral cavity and periodontal tissues during the active period of orthodontic treatment.
Materials and methods. The research methodology was implemented in the collection and analysis of scientific results on the stress-modeling effect of orthodontic appliances in patients with dentoalveolar anomalies obtained from the processed sources – published full-text articles of original and fundamental research by national and foreign authors based on the evidential databases MEDLINE / PubMed, PMC, Scopus, Web of Science, Cochrane, Google Scholar, ResearchGate and other scientific and practical resources.
Results. The main components of the stress-modeling effect of fixed orthodontic appliances on the oral cavity, and particularly on the periodontal tissues, were analyzed. The proportion of various complications is quite high and ranges from 32.7 % to 50.0 % of all cases. The development of oxidative stress during orthodontic treatment is potentiated by microcirculatory disorders and hypoxia of the periodontal tissues. The peculiarities of the periodontal cellular complex reaction, which has the ability to bear stress generated in the actin cytoskeleton by direct mechanical stimulation, to extracellular matrix proteins, affecting the three-dimensional organization of the extracellular matrix and its remodeling, have been traced. The role of lipid peroxidation, antioxidant system and enzymatic reaction of oral and crevicular fluids was also defined.
Conclusions. The development of oxidative stress during orthodontic treatment can be caused by local and systemic exposure to metals, corrosion processes in particular; by inflammation of periodontal tissues due to poor oral hygiene and activation of periodontal pathogenic microflora; by aseptic inflammation in the periodontal ligament due to the use of mechanical force. Certain enzymes of the oral fluid, in particular lactate dehydrogenase, can act as a sensitive marker of changes in the periodontal ligament metabolism during orthodontic teeth movement. The localization and nature of free radical pathology are largely caused by the nature of an exogenous inducer of lipid peroxidation and the genotypic characteristics of antioxidant system. It is this ratio that determines the initiation and further chain branching of free radical reactions. Without normalization of all pathogenetic links, successful treatment of inflammatory and dystrophic-inflammatory diseases of the periodontal tissues, in particular in orthodontic patients, is impossible.
References
Doroshenko, S. I., & Savonik, S. M. (2020). Poshyrenist zuboshchelepnykh anomalii u ditei vikom 4-17-ty rokiv [The prevalence od dento-maxillaire anomalies in children aged 4-17 years]. Suchasna stomatolohiia, (5), 70-73. [in Ukrainian]. https://doi.org/10.33295/1992-576X-2020-5-70
Danko, E. M., Panto, V. V. & Nesterenko, M. L. (2022). Otsinka faktoriv ryzyku u patsiientiv iz zakhvoriuvanniamy tkanyn parodonta [Evaluation of risk factors in patients with periodontal tissue diseases]. Visnyk problem biolohii i medytsyny, 2(Addition), 81-82. [in Ukrainian]. https://doi.org/10.29254/2077-4214-2022-2-164/addition-81-82
Potapchuk, A. M., Melnyk, V. S., Horzov, L. F., & Almashi, V. M. (2019). Poshyrenist ta struktura zuboshchelepnykh anomalii u ditei zabrudnenykh terytorii ekosystemy Verkhnoho Potyssia [Тhe prevalence and structure of tooth-jaw anomalies in children of contaminated areas of the ecosystem of the Upper Tysa region]. Suchasna stomatolohiia, (2), 50-55. [in Ukrainian]. https://doi.org/10.33295/1992-576X-2019-2-50
Drenski Balija, N., Aurer, B., Meštrović, S., & Lapter Varga, M. (2022). Prevalence of Dental Anomalies in Orthodontic Patients. Acta stomatologica Croatica, 56(1), 61-68. https://doi.org/10.15644/asc56/1/7
Fastovets, O. O., & Shtepa, V. O. (2020). Poshyrenist ta kharakter okliuziinykh porushen sered osib molodoho viku [Prevalence and character of occlusional disorders among young people]. Medicni Perspektivi, 25(1), 204-214. [in Ukrainian]. https://doi.org/10.26641/2307-0404.2020.1.200421
Tonetti, M. S., & Sanz, M. (2019). Implementation of the new classification of periodontal diseases: Decision-making algorithms for clinical practice and education. Journal of clinical periodontology, 46(4), 398-405. https://doi.org/10.1111/jcpe.13104
Celik, D., & Kantarci, A. (2021). Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens (Basel, Switzerland), 10(10), 1280. https://doi.org/10.3390/pathogens10101280
Melnyk, V. S., & Horzov, L. F. (2019). Poshyrenist i struktura zuboshchelepnykh anomalii u ditei ta pidlitkiv raionnykh tsentriv Zakarpattia [Prevalence and structure of dentognathic anomalies in children and adolescents of transcarpathian regional centers]. Visnyk stomatolohii, 33(3), 38-42. [in Ukrainian].
Thomas, B. S., & Alexander, M. (2022). Orthodontics and the Periodontium: A Symbiotic Relationship. IntechOpen. https://doi.org/10.5772/intechopen.100801
Alsulaimani, L., Alqarni, H., Akel, M., & Khalifa, F. (2023). The Orthodontics-Periodontics Challenges in Integrated Treatment: A Comprehensive Review. Cureus, 15(5), e38994. https://doi.org/10.7759/cureus.38994
Rochette, L., Mazini, L., Malka, G., Zeller, M., Cottin, Y., & Vergely, C. (2020). The Crosstalk of Adipose-Derived Stem Cells (ADSC), Oxidative Stress, and Inflammation in Protective and Adaptive Responses. International journal of molecular sciences, 21(23), 9262. https://doi.org/10.3390/ijms21239262
Borysenko, A. V., Batig, I. V., Kuzniak, N. B., & Batig, V. M. (2022). Vplyv ortodontychnoho likuvannia na parodont (ohliad literatury) [Influence of orthodontic treatment on periodont (literature review)]. Suchasna stomatolohiia, (1-2), 68-75. [in Ukrainian]. https://doi.org/10.33295/1992-576X-2022-1-2-68
Manuelli, M., Marcolina, M., Nardi, N., Bertossi, D., De Santis, D., Ricciardi, G., Luciano, U., Nocini, R., Mainardi, A., Lissoni, A., Abati, S., & Lucchese, A. (2019). Oral mucosal complications in orthodontic treatment. Minerva stomatologica, 68(2), 84–88. https://doi.org/10.23736/S0026-4970.18.04127-4
Li, Q., Ouyang, X., & Lin, J. (2022). The impact of periodontitis on vascular endothelial dysfunction. Frontiers in cellular and infection microbiology, 12, 998313. https://doi.org/10.3389/fcimb.2022.998313
Antonio-Zancajo, L., Montero, J., Albaladejo, A., Oteo-Calatayud, M. D., & Alvarado-Lorenzo, A. (2020). Pain and oral-health-related quality of life in orthodontic patients during initial therapy with conventional, low-friction, and lingual brackets and aligners (Invisalign): A prospective clinical study. Journal of Clinical Medicine, 9(7), 1–11. https://doi.org/10.3390/jcm9072088
Johal, A., Ashari, A. B., Alamiri, N., Fleming, P. S., Qureshi, U., Cox, S., & Pandis, N. (2018). Pain experience in adults undergoing treatment: A longitudinal evaluation. The Angle orthodontist, 88(3), 292–298. https://doi.org/10.2319/082317-570.1
Lai, T. T., Chiou, J. Y., Lai, T. C., Chen, T., Wang, H. Y., Li, C. H., & Chen, M. H. (2020). Perceived pain for orthodontic patients with conventional brackets or self-ligating brackets over 1 month period: A single-center, randomized controlled clinical trial. Journal of the Formosan Medical Association = Taiwan yi zhi, 119(1 Pt 2), 282–289. https://doi.org/10.1016/j.jfma.2019.05.014
Therkildsen, N. M., & Sonnesen, L. (2022). Bite Force, Occlusal Contact and Pain in Orthodontic Patients during Fixed-Appliance Treatment. Dentistry journal, 10(2), 14. https://doi.org/10.3390/dj10020014
Marincak Vrankova, Z., Rousi, M., Cvanova, M., Gachova, D., Ruzicka, F., Hola, V., Lochman, J., Izakovicova Holla, L., Brysova, A., & Borilova Linhartova, P. (2022). Effect of fixed orthodontic appliances on gingival status and oral microbiota: a pilot study. BMC oral health, 22(1), 455. https://doi.org/10.1186/s12903-022-02511-9
Melnyk, V. S., Horzov, L. F., & Izay, M. E. (2019). Zminy oralnoho mikrobiomu ditei pry likuvanni neznimnoiu ortodontychnoiu aparaturoiu [Changes of oral microbiome in children with fixed orthodontic appliances]. Visnyk problem biolohii i medytsyny, 1(Part1), 343-347. [in Ukrainian]. https://doi.org/10.29254/2077-4214-2019-1-1-148-343-347.
Petrushanko, T. O., Popovych, I. Yu., & Moshel, T. M. (2020). Otsinka dii khvorobotvornykh faktoriv u patsiientiv iz heneralizovanym parodontytom [Evaluation of the impact of pathogenic factors in patients with generalized periodontitis]. Klinichna stomatolohiia, (2), 24-32. [in Ukrainian]. https://doi.org/10.11603/2311-9624.2020.2.11398
Vincent-Bugnas, S., Borsa, L., Gruss, A., & Lupi, L. (2021). Prioritization of predisposing factors of gingival hyperplasia during orthodontic treatment: the role of amount of biofilm. BMC oral health, 21(1), 84. https://doi.org/10.1186/s12903-021-01433-2
Mester, A., Onisor, F., & Mesaros, A. S. (2022). Periodontal Health in Patients with Self-Ligating Brackets: A Systematic Review of Clinical Studies. Journal of clinical medicine, 11(9), 2570. https://doi.org/10.3390/jcm11092570
Alsalhi, R., Alkhedhairi, L., Alsaikhan, S., Bilal, R., & Ghneim, S. (2019). Epithelial Cells in Patients with Fixed Orthodontic Appliances. Journal of the College of Physicians and Surgeons--Pakistan : JCPSP, 29(10), 1012-1014. https://doi.org/10.29271/jcpsp.2019.10.1012
Nemec, M., Bartholomaeus, H. M., H Bertl, M., Behm, C., Ali Shokoohi-Tabrizi, H., Jonke, E., Andrukhov, O., & Rausch-Fan, X. (2020). Behaviour of Human Oral Epithelial Cells Grown on Invisalign® SmartTrack® Material. Materials, 13(23), 5311. https://doi.org/10.3390/ma13235311
Walker, M., Rizzuto, P., Godin, M., & Pelling, A. E. (2020). Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Scientific reports, 10(1), 7696. https://doi.org/10.1038/s41598-020-64725-7
Schröder, A., Schöniger, R., Oeldemann, J., Spanier, G., Proff, P., Jantsch, J., Kirschneck, C., & Ullrich, N. (2022). An Evaluation of Different 3D Cultivation Models on Expression Profiles of Human Periodontal Ligament Fibroblasts with Compressive Strain. International journal of molecular sciences, 23(4), 2029. https://doi.org/10.3390/ijms23042029
Matarese, M., Manuelli, M., Grassi, L., Caldara, G., Liguori, A., Matarese, G., & Lucchese, A. (2019). Molecular evaluation of tissue proteins in vivo during controlled orthodontic movement. Journal of biological regulators and homeostatic agents, 33(5), 1465-1470. https://doi.org/10.23812/19-136-A
Li, Y., Zhan, Q., Bao, M., Yi, J., & Li, Y. (2021). Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. International journal of oral science, 13(1), 20. https://doi.org/10.1038/s41368-021-00125-5
Ginaldi, L., Di Benedetto, M. C., & De Martinis, M. (2005). Osteoporosis, inflammation and ageing. Immunity and Ageing, 2. https://doi.org/10.1186/1742-4933-2-14
Cultrera, G., Lo Giudice, A., Santonocito, S., Ronsivalle, V., Conforte, C., Reitano, G., Leonardi, R., & Isola, G. (2022). MicroRNA Modulation during Orthodontic Tooth Movement: A Promising Strategy for Novel Diagnostic and Personalized Therapeutic Interventions. International journal of molecular sciences, 23(24), 15501. https://doi.org/10.3390/ijms232415501
Perillo, L., d'Apuzzo, F., Illario, M., Laino, L., Spigna, G. D., Lepore, M., & Camerlingo, C. (2020). Monitoring Biochemical and Structural Changes in Human Periodontal Ligaments during Orthodontic Treatment by Means of Micro-Raman Spectroscopy. Sensors, 20(2), 497. https://doi.org/10.3390/s20020497
Elgezawi, M., Haridy, R., Almas, K., Abdalla, M. A., Omar, O., Abuohashish, H., Elembaby, A., Christine Wölfle, U., Siddiqui, Y., & Kaisarly, D. (2022). Matrix Metalloproteinases in Dental and Periodontal Tissues and Their Current Inhibitors: Developmental, Degradational and Pathological Aspects. International journal of molecular sciences, 23(16), 8929. https://doi.org/10.3390/ijms23168929
Kapoor, P., Monga, N., Kharbanda, O. P., Kapila, S., Miglani, R., & Moganty, R. (2019). Effect of orthodontic forces on levels of enzymes in gingival crevicular fluid (GCF): A systematic review. Dental press journal of orthodontics, 24(2), 40.e1-40.e22. https://doi.org/10.1590/2177-6709.24.2.40.e1-22.onl
Sun, C., Janjic Rankovic, M., Folwaczny, M., Otto, S., Wichelhaus, A., & Baumert, U. (2021). Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Frontiers in bioengineering and biotechnology, 9, 695053. https://doi.org/10.3389/fbioe.2021.695053
Yamaguchi, M., & Fukasawa, S. (2021). Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. International journal of molecular sciences, 22(5), 2388. https://doi.org/10.3390/ijms22052388
Kakali, L., Giantikidis, I., Sifakakis, I., Kalimeri, E., Karamani, I., Mavrogonatou, E., & Kloukos, D. (2022). Fluctuation of bone turnover markers' levels in samples of gingival crevicular fluid after orthodontic stimulus: a systematic review. Systematic reviews, 11(1), 3. https://doi.org/10.1186/s13643-021-01860-w
Hua, R., Zhang, J., Riquelme, M. A., & Jiang, J. X. (2021). Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology. Current osteoporosis reports, 19(1), 66-74. https://doi.org/10.1007/s11914-020-00645-9
Iranzo-Cortés, J. E., Montiel-Company, J. M., Bellot-Arcis, C., Almerich-Torres, T., Acevedo-Atala, C., Ortolá-Siscar, J. C., & Almerich-Silla, J. M. (2020). Factors related to the psychological impact of malocclusion in adolescents. Scientific reports, 10(1), 13471. https://doi.org/10.1038/s41598-020-70482-4
Consolaro A. (2019). Extreme root resorption in orthodontic practice: teeth do not have to be replaced with implants. Dental press journal of orthodontics, 24(5), 20-28. https://doi.org/10.1590/2177-6709.24.5.020-028.oin
Konishi, R., Mori, A., & Yoshida, T. (2023). A Case of Multiple Idiopathic Root Resorption. Open Journal of Stomatology, 13(04), 156-165. https://doi.org/10.4236/ojst.2023.134013
Nakamura, S., Tanimoto, K., & Bhawal, U. K. (2022). Ribosomal Stress Couples with the Hypoxia Response in Dec1-Dependent Orthodontic Tooth Movement. International journal of molecular sciences, 24(1), 618. https://doi.org/10.3390/ijms24010618
Baxter, S. J., Sydorak, I., Ma, P. X., & Hatch, N. E. (2020). Impact of pharmacologic inhibition of tooth movement on periodontal and tooth root tissues during orthodontic force application. Orthodontics & craniofacial research, 23(1), 35-43. https://doi.org/10.1111/ocr.12350
Brockhaus, J., Craveiro, R. B., Azraq, I., Niederau, C., Schröder, S. K., Weiskirchen, R., Jankowski, J., & Wolf, M. (2021). In Vitro Compression Model for Orthodontic Tooth Movement Modulates Human Periodontal Ligament Fibroblast Proliferation, Apoptosis and Cell Cycle. Biomolecules, 11(7), 932. https://doi.org/10.3390/biom11070932
Ullrich, N., Schröder, A., Jantsch, J., Spanier, G., Proff, P., & Kirschneck, C. (2019). The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain-an in vitro study of human periodontal ligament fibroblasts. International journal of oral science, 11(4), 33. https://doi.org/10.1038/s41368-019-0066-x
Gharbi, A., Hamila, A., Bouguezzi, A., Dandana, A., Ferchichi, S., Chandad, F., Guezguez, L., & Miled, A. (2019). Biochemical parameters and oxidative stress markers in Tunisian patients with periodontal disease. BMC oral health, 19(1), 225. https://doi.org/10.1186/s12903-019-0912-4
Dallel, I., Ben Salem, I., Merghni, A., Bellalah, W., Neffati, F., Tobji, S., Mastouri, M., & Ben Amor, A. (2020). Influence of orthodontic appliance type on salivary parameters during treatment. The Angle orthodontist, 90(4), 532-538. https://doi.org/10.2319/082919-562.1
Wang, Y., Andrukhov, O., & Rausch-Fan, X. (2017). Oxidative Stress and Antioxidant System in Periodontitis. Frontiers in physiology, 8, 910. https://doi.org/10.3389/fphys.2017.00910
Sczepanik, F. S. C., Grossi, M. L., Casati, M., Goldberg, M., Glogauer, M., Fine, N., & Tenenbaum, H. C. (2020). Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontology 2000, 84(1), 45-68. https://doi.org/10.1111/prd.12342
Kovac, V., Poljsak, B., Perinetti, G., & Primozic, J. (2019). Systemic Level of Oxidative Stress during Orthodontic Treatment with Fixed Appliances. BioMed research international, 2019, 5063565. https://doi.org/10.1155/2019/5063565
Espinoza-Montero, P. J., Montero-Jiménez, M., Fernández, L., Paz, J. L., Piñeiros, J. L., & Ceballos, S. M. (2022). In vitro wearing away of orthodontic brackets and wires in different conditions: A review. Heliyon, 8(9), e10560. https://doi.org/10.1016/j.heliyon.2022.e10560
Primožič, J., Poljšak, B., Jamnik, P., Kovač, V., Čanadi Jurešić, G., & Spalj, S. (2021). Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants, 10(9), 1359. https://doi.org/10.3390/antiox10091359
Yamyar, S., & Daokar, S. (2019). Oxidative Stress Levels in Orthodontic Patients and Efficacy of Antioxidant Supplements in Combating Its Effects- A Randomized Clinical Study. Orthodontic Journal of Nepal, 9(2), 29-34. https://doi.org/10.3126/ojn.v9i2.28409
Chen, Y., Gulinuer, A., & Zhao, J. (2023). Lipopolysaccharide induces oxidative stress and inhibits osteogenic differentiation in periodontal ligament stem cells through downregulating Nrf2. Molecular and Cellular Toxicology, 19(2), 247-254. https://doi.org/10.1007/s13273-022-00253-x
Cherian, D. A., Peter, T., Narayanan, A., Madhavan, S. S., Achammada, S., & Vynat, G. P. (2019). Malondialdehyde as a Marker of Oxidative Stress in Periodontitis Patients. Journal of pharmacy & bioallied sciences, 11(Suppl 2), S297-S300. https://doi.org/10.4103/JPBS.JPBS_17_19
Menéndez López-Mateos, C., Menéndez López-Mateos, M. L., Aguilar-Salvatierra, A., Gómez-Moreno, G., Carreño, J. C., Khaldy, H., & Menéndez-Núñez, M. (2022). Salivary Markers of Oxidative Stress in Patients Undergoing Orthodontic Treatment with Clear Aligners versus Self-Ligating Brackets: A Non-Randomized Clinical Trial. Journal of clinical medicine, 11(12), 3531. https://doi.org/10.3390/jcm11123531
Alsaykhan, K., Khan, N. S., Aljumah, M. I., & Albughaylil, A. S. (2022). Comparative Evaluation of Salivary Enzyme in Patients With Gingivitis and Periodontitis: A Clinical-Biochemical Study. Cureus, 14(1), e20991. https://doi.org/10.7759/cureus.20991
Viglianisi, G., Tartaglia, G. M., Santonocito, S., Amato, M., Polizzi, A., Mascitti, M., & Isola, G. (2023). The Emerging Role of Salivary Oxidative Stress Biomarkers as Prognostic Markers of Periodontitis: New Insights for a Personalized Approach in Dentistry. Journal of personalized medicine, 13(2), 166. https://doi.org/10.3390/jpm13020166
Kumar, B. D., Singh, N., Verma, S. K., Singh, S., & Thakur, S. (2022). A Study to Analyze the Alkaline Phosphatase and Lactate Dehydrogenase Enzyme Activity in Gingival Crevicular Fluid During Orthodontic Tooth Movements. Journal of pharmacy & bioallied sciences, 14(Suppl 1), S490-S493. https://doi.org/10.4103/jpbs.jpbs_51_22
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)