Application of virtual navigation in the treatment of macro-re-entrant atrial tachyarrhythmias
DOI:
https://doi.org/10.14739/2310-1210.2023.6.288008Keywords:
tachyarrhythmia, computer-assisted surgery, radiofrequency catheter ablationAbstract
Macro-re-entrant atrial tachyarrhythmias occupy the leading positions in the structure of tachyarrhythmias, and one of the most common in this group is atrial flutter. These abnormal rhythms lead to a significant decrease in the quality of patients’ life, and sometimes, indirectly due to complications, can lead to disability and fatal consequences. Medical treatment for this group of arrhythmias has limited effectiveness, and the surgical method of treatment – catheter ablation – comes to the first place. Ablation of atrial flutter is traditionally performed under the guidance of fluoroscopy without the use of a navigation system, but this is associated with increased radiation exposure to patients and staff. Advances in modern arrhythmology make it possible to create anatomical models of heart chambers and activation models of the excitation spreading along anatomical models, reducing the radiation load, but requiring additional equipment and skills.
Aim: to compare the procedure duration and radiation load during radiofrequency catheter ablation of the cavo-tricuspid isthmus using 3D navigation with traditional methods.
Materials and methods. The work was based on the analysis of treatment results in 84 patients at National M. Amosov Institute of Cardiovascular Surgery affiliated to National Academy of Medical Sciences of Ukraine in the period from 2014 to 2021. Depending on the imaging method, patients were divided into 2 groups. Group I included 31 patients who underwent radiofrequency cavo-tricuspid isthmus (CTI) ablation according to the traditional method under fluoroscopic control without using a navigation system. Group II comprised 27 patients in whom an anatomical model of the right atrium was created.
Results. Success criteria were achieved in all groups, bidirectional block line was created at the level of the CTI. In group I, the average time from the first application to the restoration of sinus rhythm was 325 ± 25 s with an average number of applications of 7.4 ± 0.6 (from 5 to 10). The average procedure time was 43.0 ± 3.3 min, with an average X-ray time of 572 ± 44 s and an average dose area product (DAP) was 62.0 ± 5.0 Gy.cm2. In group II, the total duration of the first stage of the intervention was 312 ± 26 s. The average time to stopping tachycardia and restoring sinus rhythm was 230 ± 19 s. The average time from sinus rhythm restoration to confirmation of bidirectional CTI block was 71 ± 6 s with an average number of applications of 3.2 ± 3.0 per the procedure. The average procedure time was 41.5 ± 3.5 min, the average X-ray time was 120 ± 10 s, the average DAP was 15.0 ± 1.3 Gy.cm2.
Conclusions. The usage of the anatomical model of the right atrium reduces X-ray exposure by 75.8 %, in comparison to the traditional technique, during radiofrequency catheter ablation of the cavo-tricuspid isthmus with similar procedure time. The anatomical model can be recommended for ablation of the cavo-tricuspid isthmus.
References
Wu, M. Y., Lin, Y. N., Wu, H. P., Huang, Y. Y., Chen, J. Y., Lin, K. H., & Chang, K. C. (2019). Inverse Correlation Between Left Atrial Appendage Function and CHA2DS2-VASc Score in Patients with Atrial Flutter. Scientific reports, 9(1), 17864. https://doi.org/10.1038/s41598-019-54505-3
Lin, Y. S., Chen, Y. L., Chen, T. H., Lin, M. S., Liu, C. H., Yang, T. Y., Chung, C. M., & Chen, M. C. (2018). Comparison of Clinical Outcomes Among Patients With Atrial Fibrillation or Atrial Flutter Stratified by CHA2DS2-VASc Score. JAMA network open, 1(4), e180941. https://doi.org/10.1001/jamanetworkopen.2018.0941
Zhang, J., Johnsen, S. P., Guo, Y., & Lip, G. Y. H. (2021). Epidemiology of Atrial Fibrillation: Geographic/Ecological Risk Factors, Age, Sex, Genetics. Cardiac electrophysiology clinics, 13(1), 1-23. https://doi.org/10.1016/j.ccep.2020.10.010
Hindricks, G., Potpara, T., Dagres, N., Arbelo, E., Bax, J. J., Blomström-Lundqvist, C., Boriani, G., Castella, M., Dan, G. A., Dilaveris, P. E., Fauchier, L., Filippatos, G., Kalman, J. M., La Meir, M., Lane, D. A., Lebeau, J. P., Lettino, M., Lip, G. Y. H., Pinto, F. J., Thomas, G. N., … ESC Scientific Document Group (2021). 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. European heart journal, 42(5), 373-498. https://doi.org/10.1093/eurheartj/ehaa612
Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., Kwan, T. W., … American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2019). Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 139(10), e56-e528. https://doi.org/10.1161/CIR.0000000000000659
Kim, J., Lee, S. H., Kim, H. R., Chung, T. W., Choi, J. H., Kim, J. Y., Park, S. J., On, Y. K., Kim, J. S., & Park, K. M. (2022). Predictors of permanent pacemaker implantation after sinus conversion of cavotricuspid isthmus-dependent atrial flutter. Scientific reports, 12(1), 5336. https://doi.org/10.1038/s41598-022-09439-8
Karoui, A., Bendahmane, M., & Zemzemi, N. (2021). Cardiac Activation Maps Reconstruction: A Comparative Study Between Data-Driven and Physics-Based Methods. Frontiers in physiology, 12, 686136. https://doi.org/10.3389/fphys.2021.686136
Prakosa, A., Sermesant, M., Allain, P., Villain, N., Rinaldi, C. A., Rhode, K., Razavi, R., Delingette, H., & Ayache, N. (2014). Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences. IEEE transactions on bio-medical engineering, 61(2), 235-245. https://doi.org/10.1109/TBME.2013.2281619
Hernández-Romero, I., Molero, R., Fambuena-Santos, C., Herrero-Martín, C., Climent, A. M., & Guillem, M. S. (2023). Electrocardiographic imaging in the atria. Medical & biological engineering & computing, 61(4), 879-896. https://doi.org/10.1007/s11517-022-02709-7
Yugo, D., Chen, Y. Y., Lin, Y. J., Chien, K. L., Chang, S. L., Lo, L. W., Hu, Y. F., Chao, T. F., Chung, F. P., Liao, J. N., Chang, T. Y., Lin, C. Y., Tuan, T. C., Kuo, L., Wu, C. I., Liu, C. M., Liu, S. H., Li, C. H., Hsieh, Y. C., & Chen, S. A. (2022). Long-term mortality and cardiovascular outcomes in patients with atrial flutter after catheter ablation. Europace : European pacing, arrhythmias, and cardiac electrophysiology, 24(6), 970-978. https://doi.org/10.1093/europace/euab308
Chou, C. Y., Chung, F. P., Chang, H. Y., Lin, Y. J., Lo, L. W., Hu, Y. F., Chao, T. F., Liao, J. N., Tuan, T. C., Lin, C. Y., Chang, T. Y., Liu, C. M., Wu, C. I., Huang, S. H., Chen, C. C., Cheng, W. H., Liu, S. H., Lugtu, I. C., Jain, A., Feng, A. N., … Chen, S. A. (2021). Prediction of Recurrent Atrial Tachyarrhythmia After Receiving Atrial Flutter Ablation in Patients With Prior Cardiac Surgery for Valvular Heart Disease. Frontiers in cardiovascular medicine, 8, 741377. https://doi.org/10.3389/fcvm.2021.741377
Sethi, N. J., Safi, S., Nielsen, E. E., Feinberg, J., Gluud, C., & Jakobsen, J. C. (2017). The effects of rhythm control strategies versus rate control strategies for atrial fibrillation and atrial flutter: a protocol for a systematic review with meta-analysis and Trial Sequential Analysis. Systematic reviews, 6(1), 47. https://doi.org/10.1186/s13643-017-0449-z
Timmis, A., Vardas, P., Townsend, N., Torbica, A., Katus, H., De Smedt, D., Gale, C. P., Maggioni, A. P., Petersen, S. E., Huculeci, R., Kazakiewicz, D., de Benito Rubio, V., Ignatiuk, B., Raisi-Estabragh, Z., Pawlak, A., Karagiannidis, E., Treskes, R., Gaita, D., Beltrame, J. F., McConnachie, A., … Atlas Writing Group, European Society of Cardiology (2022). European Society of Cardiology: cardiovascular disease statistics 2021. European heart journal, 43(8), 716-799. https://doi.org/10.1093/eurheartj/ehab892
Nogami, A., Kurita, T., Abe, H., Ando, K., Ishikawa, T., Imai, K., Usui, A., Okishige, K., Kusano, K., Kumagai, K., Goya, M., Kobayashi, Y., Shimizu, A., Shimizu, W., Shoda, M., Sumitomo, N., Seo, Y., Takahashi, A., Tada, H., Naito, S., … JCS/JHRS Joint Working Group (2021). JCS/JHRS 2019 Guideline on Non-Pharmacotherapy of Cardiac Arrhythmias. Circulation journal, 85(7), 1104-1244. https://doi.org/10.1253/circj.CJ-20-0637
Waldmann, V., Bessière, F., Raimondo, C., Maltret, A., Amet, D., Marijon, E., & Combes, N. (2021). Atrial flutter catheter ablation in adult congenital heart diseases. Indian pacing and electrophysiology journal, 21(5), 291-302. https://doi.org/10.1016/j.ipej.2021.06.003
Azzolin, L., Eichenlaub, M., Nagel, C., Nairn, D., Sanchez, J., Unger, L., Dössel, O., Jadidi, A., & Loewe, A. (2023). Personalized ablation vs. conventional ablation strategies to terminate atrial fibrillation and prevent recurrence. Europace : European pacing, arrhythmias, and cardiac electrophysiology, 25(1), 211-222. https://doi.org/10.1093/europace/euac116
Sommer, P., Wojdyla-Hordynska, A., Rolf, S., Gaspar, T., Eitel, C., Arya, A., Hindricks, G., & Piorkowski, C. (2013). Initial experience in ablation of typical atrial flutter using a novel three-dimensional catheter tracking system. Europace : European pacing, arrhythmias, and cardiac electrophysiology, 15(4), 578-581. https://doi.org/10.1093/europace/eus226
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)