The role of intestinal microbiota in the development of dyslipidemia and cardiovascular disease risk

Authors

DOI:

https://doi.org/10.14739/2310-1210.2024.2.291575

Keywords:

dysbiosis, bile acids, metabolism, metabolites, microbiome, prebiotics, probiotics

Abstract

The aim of the study: to summarize the study results on the interaction between intestinal microbiota and the human body in terms of the risk for dyslipidemia and cardiovascular system diseases.

Material and methods. A descriptive and comparative study was conducted based on the analysis of scientific literature focused on the role of intestinal microbiota in the occurrence of dyslipidemia and the development of cardiovascular diseases. The following research methods were used: search, comparative, analysis of scientific literature, generalization, synthesis.

Results. Gut microbiota plays an important role in maintaining health, and its pathology contributes to the risk for cardiovascular diseases. In some cases, monitoring the intestinal microbiota and the preventive use of pre- and probiotics can reduce the risk for developing cardiovascular system diseases.

Conclusions. It has been found that trimethylamine-N-oxide, a microbiota-dependent metabolite, is the first of many existing bacterial products with the proven role in the development of cardiovascular system diseases.

Author Biography

T. V. Bogoslav, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Associate Professor of the Department of Internal Diseases 1

References

Ascher S, Reinhardt C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol. 2018;48(4):564-75. doi: https://doi.org/10.1002/eji.201646879

Fialho A, Fialho A, Kochhar G, Schenone AL, Thota P, McCullough AJ, et al. Association Between Small Intestinal Bacterial Overgrowth by Glucose Breath Test and Coronary Artery Disease. Dig Dis Sci. 2018;63(2):412-21. doi: https://doi.org/10.1007/s10620-017-4828-z

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. doi: https://doi.org/10.1038/nature09944

Ahmadmehrabi S, & Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32(6):761-766. https://doi:10.1097/HCO.0000000000000445

Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P, Fang Z, Zhou J, Guan X, Ding Y, Wang S, Khan M, Xin Y, Li S, Ma Y. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol. 2017;7:381. doi: https://doi.org/10.3389/fcimb.2017.00381

Gózd-Barszczewska A, Kozioł-Montewka M, Barszczewski P, Młodzińska A, Humińska K. Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med. 2017;24(3):416-22. doi: https://doi.org/10.26444/aaem/75456

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: https://doi.org/10.1038/nature05414

Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc. 2017;6(7):e004947. doi: https://doi.org/10.1161/JAHA.116.004947

Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018;200(2):203-17. doi: https://doi.org/10.1007/s00203-017-1459-x

Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303(11):G1288-95. doi: https://doi.org/10.1152/ajpgi.00341.2012

Jin M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med. 2019;23(4):2343-50. doi: https://doi.org/10.1111/jcmm.14195

Nowiński A, Ufnal M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition. 2018;46:7-12. doi: https://doi.org/10.1016/j.nut.2017.08.001

Ahmadmehrabi S, Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32(6):761-6. doi: https://doi.org/10.1097/HCO.0000000000000445

Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83(6):1010-6. doi: https://doi.org/10.1038/ki.2012.440

Liu Z, Li J, Liu H, Tang Y, Zhan Q, Lai W, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis. 2019;284:121-8. doi: https://doi.org/10.1016/j.atherosclerosis.2018.11.038

Moran-Ramos S, López-Contreras BE, Canizales-Quinteros S. Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality? Arch Med Res. 2017;48(8):735-53. doi: https://doi.org/10.1016/j.arcmed.2017.11.003

Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res. 2015;117(9):817-24. doi: https://doi.org/10.1161/CIRCRESAHA.115.306807

Pluznick JL. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Curr Hypertens Rep. 2017;19(4):25. doi: https://doi.org/10.1007/s11906-017-0722-5

Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J Obes. 2016;2016:7353642. doi: https://doi.org/10.1155/2016/7353642

Tang WH, Kitai T, Hazen SL. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120(7):1183-96. doi: https://doi.org/10.1161/CIRCRESAHA.117.309715

Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698-719. doi: https://doi.org/10.3748/wjg.v22.i39.8698

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. doi: https://doi.org/10.1038/nature11450

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262-6. doi: https://doi.org/10.1038/nature15766

Xie J, Lu W, Zhong L, Hu Y, Li Q, Ding R, et al. Alterations in gut microbiota of abdominal aortic aneurysm mice. BMC Cardiovasc Disord. 2020;20(1):32. doi: https://doi.org/10.1186/s12872-020-01334-2

Shikata F, Shimada K, Sato H, Ikedo T, Kuwabara A, Furukawa H, et al. Potential Influences of Gut Microbiota on the Formation of Intracranial Aneurysm. Hypertension. 2019;73(2):491-6. doi: https://doi.org/10.1161/HYPERTENSIONAHA.118.11804

Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, et al. Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front Pharmacol. 2019;10:1360. doi: https://doi.org/10.3389/fphar.2019.01360

Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. doi: https://doi.org/10.3390/nu10101398

Antony S, Leon MP de. Probiotics and its relationship with the cardiovascular system. In: Probiotics - Current Knowledge and Future Prospects. InTech; 2018. https://doi.org/10.5772/intechopen.75077

Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation. 2018;138(22):2486-98. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.033714

Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016;165(1):111-24. doi: https://doi.org/10.1016/j.cell.2016.02.011

Richards EM, Pepine CJ, Raizada MK, Kim S. The Gut, Its Microbiome, and Hypertension. Curr Hypertens Rep. 2017;19(4):36. doi: https://doi.org/10.1007/s11906-017-0734-1

Robles-Vera I, Toral M, de la Visitación N, Sánchez M, Gómez-Guzmán M, Romero M, et al. Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Short-Chain Fatty Acids. Mol Nutr Food Res. 2020;64(6):e1900616. doi: https://doi.org/10.1002/mnfr.201900616

Katsimichas T, Antonopoulos AS, Katsimichas A, Ohtani T, Sakata Y, Tousoulis D. The intestinal microbiota and cardiovascular disease. Cardiovasc Res. 2019;115(10):1471-86. doi: https://doi.org/10.1093/cvr/cvz135

Ganesh BP, Nelson JW, Eskew JR, Ganesan A, Ajami NJ, Petrosino JF, et al. Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension. 2018;72(5):1141-50. doi: https://doi.org/10.1161/HYPERTENSIONAHA.118.11695

Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-40. doi: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315

Vasquez EC, Pereira TMC, Peotta VA, Baldo MP, Campos-Toimil M. Probiotics as Beneficial Dietary Supplements to Prevent and Treat Cardiovascular Diseases: Uncovering Their Impact on Oxidative Stress. Oxid Med Cell Longev. 2019;2019:3086270. doi: https://doi.org/10.1155/2019/3086270

Kitai T, Tang WH. Gut microbiota in cardiovascular disease and heart failure. Clin Sci (Lond). 2018;132(1):85-91. doi: https://doi.org/10.1042/CS20171090

Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X, et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018;50(10):893-903. doi: https://doi.org/10.1152/physiolgenomics.00070.2018

Amin AM, Mostafa H, Arif NH, Abdul Kader MA, Kah Hay Y. Metabolomics profiling and pathway analysis of human plasma and urine reveal further insights into the multifactorial nature of coronary artery disease. Clin Chim Acta. 2019;493:112-22. doi: https://doi.org/10.1016/j.cca.2019.02.030

Liu H, Chen X, Hu X, Niu H, Tian R, Wang H, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 2019;7(1):68. doi: https://doi.org/10.1186/s40168-019-0683-9

Malik M, Suboc TM, Tyagi S, Salzman N, Wang J, Ying R, et al. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circ Res. 2018;123(9):1091-102. doi: https://doi.org/10.1161/CIRCRESAHA.118.313565

Horvath A, Leber B, Feldbacher N, Tripolt N, Rainer F, Blesl A, et al. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study. Eur J Nutr. 2020;59(7):2969-83. doi: https://doi.org/10.1007/s00394-019-02135-w

Tang TW, Chen HC, Chen CY, Yen CY, Lin CJ, Prajnamitra RP, et al. Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair. Circulation. 2019;139(5):647-59. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.035235

Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727-35. doi: https://doi.org/10.1096/fj.11-197921

Mayerhofer CC, Kummen M, Holm K, Broch K, Awoyemi A, Vestad B, et al. Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail. 2020;7(2):456-66. doi: https://doi.org/10.1002/ehf2.12596

Kitai T, Kirsop J, Tang WH. Exploring the Microbiome in Heart Failure. Curr Heart Fail Rep. 2016;13(2):103-9. doi: https://doi.org/10.1007/s11897-016-0285-9

Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137-54. doi: https://doi.org/10.1038/s41569-018-0108-7

Liu Z, Liu HY, Zhou H, Zhan Q, Lai W, Zeng Q, et al. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice. Front Microbiol. 2017;8:1687. doi: https://doi.org/10.3389/fmicb.2017.01687

Lataro RM, Imori PF, Santos ES, Silva LE, Duarte RT, Silva CA, et al. Heart failure developed after myocardial infarction does not affect gut microbiota composition in the rat. Am J Physiol Gastrointest Liver Physiol. 2019;317(3):G342-8. doi: https://doi.org/10.1152/ajpgi.00018.2019

Published

2024-03-29

How to Cite

1.
Bogoslav TV. The role of intestinal microbiota in the development of dyslipidemia and cardiovascular disease risk. Zaporozhye Medical Journal [Internet]. 2024Mar.29 [cited 2024Nov.8];26(2):149-53. Available from: http://zmj.zsmu.edu.ua/article/view/291575