The role of carbohydrate malabsorption syndrome in the pathogenesis of rotavirus diarrhea (a literature review)

Authors

DOI:

https://doi.org/10.14739/2310-1210.2024.4.302524

Keywords:

rotavirus infection, pathogenesis, diarrhea, carbohydrate malabsorption syndrome, lactase deficiency, children

Abstract

The aim – to summarize literature data on the pathogenetic mechanisms of the diarrheal syndrome development in children with rotavirus infection and to determine the role of carbohydrate malabsorption syndrome in it through a complex analysis of literature reviews and empirical studies.

Rotavirus infection (RVI) remains the main cause of severe dehydrating gastroenteritis in children under five years of age. One of the most important pathogenetic links of rotavirus gastroenteritis is the development of osmotic diarrhea induced by carbohydrate malabsorption syndrome. Its development is associated with disaccharidase insufficiency and impaired absorption of monosaccharides in the small intestine.

Carbohydrate malabsorption syndrome is found in 67.0–98.3 % of children with RVI. Its laboratory manifestations (an increase in levels of fecal carbohydrates and lactose) are observed starting from the first days of the disease, and the maximum indicators are recorded in the period from the fifth to the seventh day.

Conclusions. Carbohydrate malabsorption syndrome is observed in the absolute majority of children with RVI, and its maximum severity is noted from the fifth to the seventh day of the disease, being realized mainly due to lactase deficiency. The severity of carbohydrate malabsorption syndrome can be influenced by concomitant pathological conditions, that lead to a decrease in the activity of disaccharidases in the small intestine, and the metabolic activity of the intestinal microbiota.

Author Biographies

O. V. Usachova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Pediatric Infectious Diseases

N. V. Vorobiova, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Assistant of the Department of Pediatric Infectious Diseases

E. A. Silina, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Assistant of the Department of Pediatric Infectious Diseases

T. B. Matvieieva, CNE “Zaporizhzhia Regional Clinical Hospital of Infectious Diseases” of Zaporizhzhia Regional Council, Ukraine

MD, Head of the Department No. 4

References

Fischer TK, Rasmussen LD, Fonager J. Taking gastro-surveillance into the 21st century. J Clin Virol. 2019;117:43-8. doi: https://doi.org/10.1016/j.jcv.2019.05.013

Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF, Ahmed T, et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018 Oct 1;172(10):958-65. doi: https://doi.org/10.1001/jamapediatrics.2018.1960

Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primers. 2017;3:17083. doi: https://doi.org/10.1038/nrdp.2017.83

Arístegui J, Alfayate-Miguelez S, Carazo-Gallego B, Garrote E, Díaz-Munilla L, Mendizabal M, et al. Clinical characteristics, health care resource utilization and direct medical costs of Rotavirus hospitalizations in Spain (2013-2018). Hum Vaccin Immunother. 2022;18(5):2046961. doi: https://doi.org/10.1080/21645515.2022.2046961

Johansen RL, Schouw CH, Madsen TV, Nielsen XC, Engberg J. Epidemiology of gastrointestinal infections: lessons learned from syndromic testing, Region Zealand, Denmark. Eur J Clin Microbiol Infect Dis. 2023;42(9):1091-101. doi: https://doi.org/10.1007/s10096-023-04642-5

Chernyshova L, Teslenko M, Radionova N, Demchishina I, Kotlik L, Sadkova O, et al. [Longitudinal Observation on Rotavirus Infection in Children Aged under 5 Years Old Hospitalized in 2 Hospitals of Ukraine in 2006-2015]. Child's health. 2016;(7):117-23. Ukrainian. doi: https://doi.org/10.22141/2224-0551.7.75.2016.86736

Govoruha OY., Turitska TG, Sidorenko GG. [Monitoring of rotavirus infection in the population of pavlograd]. Bulletin of problems biology and medicine. 2022;(1):81-5. Ukrainian. doi: https://doi.org/10.29254/2077-4214-2020-1-155-81-85.

Hu Y, Gui L, Chang J, Liu J, Xu S, Deng C, et al. The incidence of infants with rotavirus enteritis combined with lactose intolerance. Pak J Pharm Sci. 2016;29(1 Suppl):321-3.

Vorobiova NV, Usachova OV. [Laboratory signs of carbohydrate malabsorption in early age children with rotavirus infection]. Pathologia. 2021;18(1):72-9. Ukrainian. doi: https://doi.org/10.14739/2310-1237.2021.1.228925

Misselwitz B, Butter M, Verbeke K, Fox MR. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut. 2019;68(11):2080-91. doi: https://doi.org/10.1136/gutjnl-2019-318404

Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to Dissect Gastrointestinal Virus-Host Interactions: What Have We Learned? Viruses. 2021;13(6):999. doi: https://doi.org/10.3390/v13060999

Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence. 2021;12(1):1022-62. doi: https://doi.org/10.1080/21505594.2021.1903198

Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch. 2017;469(9):1093-105. doi: https://doi.org/10.1007/s00424-017-1987-x

Nezghoda I, Naumenko O, Asaulenko A, Onofriichuk O, Brovinska L, Kolesnyk A, et al. [The effectiveness of racecadotril in the treatment of rotavirus infection in children]. Aktualna infektolohiia. 2020;8(2):30-5. Ukrainian. doi: https://doi.org/10.22141/2312-413x.8.2.2020.199733

Dian Z, Sun Y, Zhang G, Xu Y, Fan X, Yang X, et al. Rotavirus-related systemic diseases: clinical manifestation, evidence and pathogenesis. Crit Rev Microbiol. 2021;47(5):580-95. doi: https://doi.org/10.1080/1040841X.2021.1907738

Paparo L, Tripodi L, Bruno C, Pisapia L, Damiano C, Pastore L, et al. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci Rep. 2020;10(1):12636. doi: https://doi.org/10.1038/s41598-020-69533-7

Dong D, Xie W, Liu M. Alteration of cell junctions during viral infection. Thorac Cancer. 2020;11(3):519-25. doi: https://doi.org/10.1111/1759-7714.13344

Chen H, Song L, Li G, Chen W, Zhao S, Zhou R, et al. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes. 2017;53(3):367-76. doi: https://doi.org/10.1007/s11262-017-1444-0

Garas M, Marusyk U. [Modern etiopathogenetic and clinical features of rotavirus infection in children]. Aktualna infektolohiia. 2019;7(1):13-6. Ukrainian. doi: https://doi.org/10.22141/2312-413x.7.1.2019.159223

Kashyap G, Singh R, Malik YS, Agrawal RK, Singh KP, Kumar P, et al. Experimental bovine rotavirus-A (RV-A)infection causes intestinal and extra-intestinal pathology in suckling mice. Microb Pathog. 2018;121:22-6. doi: https://doi.org/10.1016/j.micpath.2018.04.038

Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Koopmans MP, Büller HA, et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol. 2003;77(24):13005-16. doi: https://doi.org/10.1128/jvi.77.24.13005-13016.2003

Soliman M, Seo JY, Baek YB, Park JG, Kang MI, Cho KO, et al. Opposite Effects of Apoptotic and Necroptotic Cellular Pathways on Rotavirus Replication. J Virol. 2022;96(1):e0122221. doi: https://doi.org/10.1128/JVI.01222-21

Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, et al. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol. 2017;19(3). doi: https://doi.org/10.1111/cmi.12670

Zhao Y, Hu N, Jiang Q, Zhu L, Zhang M, Jiang J, et al. Protective effects of sodium butyrate on rotavirus inducing endoplasmic reticulum stress-mediated apoptosis via PERK-eIF2α signaling pathway in IPEC-J2 cells. J Anim Sci Biotechnol. 2021;12(1):69. doi: https://doi.org/10.1186/s40104-021-00592-0

Guerrero R, Guerrero C, Acosta O. Induction of Cell Death in the Human Acute Lymphoblastic Leukemia Cell Line Reh by Infection with Rotavirus Isolate Wt1-5. Biomedicines. 2020;8(8):242. doi: https://doi.org/10.3390/biomedicines8080242

Guerrero RA, Guerrero CA, Guzmán F, Acosta O. Assessing the oncolytic potential of rotavirus on mouse myeloma cell line Sp2/0-Ag14. Biomedica. 2020;40(2):362-81. doi: https://doi.org/10.7705/biomedica.4916

Wanes D, Husein DM, Naim HY. Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives. Nutrients. 2019;11(2):461. doi: https://doi.org/10.3390/nu11020461

Elferink H, Bruekers JP, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci. 2020;77(23):4799-826. doi: https://doi.org/10.1007/s00018-020-03564-1

Julio-Gonzalez LC, Moreno FJ, Jimeno ML, Doyagüez EG, Olano A, Corzo N, et al. Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Res Int. 2021;139:109940. doi: https://doi.org/10.1016/j.foodres.2020.109940

Burke M. Carbohydrate Intolerance and Disaccharidase Measurement - a Mini-Review. Clin Biochem Rev. 2019;40(4):167-74. doi: https://doi.org/10.33176/AACB-19-00025

Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol. 2018;6(1):33-45. doi: https://doi.org/10.1016/j.jcmgh.2018.02.009

Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses. 2022;14(5):875. doi: https://doi.org/10.3390/v14050875

Tomczonek-Moruś J, Wojtasik A, Zeman K, Smolarz B, Bąk-Romaniszyn L. 13910C>T and 22018G>A LCT gene polymorphisms in diagnosing hypolactasia in children. United European Gastroenterol J. 2019;7(2):210-6. doi: https://doi.org/10.1177/2050640618814136

Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr. 2019;110(2):273-9. doi: https://doi.org/10.1093/ajcn/nqz104

MacGillivray S, Fahey T, McGuire W. Lactose avoidance for young children with acute diarrhoea. Cochrane Database Syst Rev. 2013;2013(10):CD005433. doi: https://doi.org/10.1002/14651858.CD005433.pub2

Ivanko OH, Bondarenko VM. [Cluster analysis of the acute diarrhea causes in young children admitted to the infectious diseases unit]. Pathologia 2021;18(2):196-202. Ukrainian. doi: https://doi.org/10.14739/2310-1237.2021.2.229500

Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch. 2017;469(9):1093-105. doi: https://doi.org/10.1007/s00424-017-1987-x

Kirsanova T, Kuznetsov S. Secondary lactase deficiency and its correction in infants ill with rotavirus infection. Annals of Mechnikov Institute. 2016;(4):107-11. Ukrainian. Available from: https://journals.uran.ua/ami/article/view/192012

He T, Venema K, Priebe MG, Welling GW, Brummer RJ, Vonk RJ. The role of colonic metabolism in lactose intolerance. Eur J Clin Invest. 2008;38(8):541-7. doi: https://doi.org/10.1111/j.1365-2362.2008.01966.x

Wanes D, Husein DM, Naim HY. Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives. Nutrients. 2019;11(2):461. doi: https://doi.org/10.3390/nu11020461

Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr. 2019;110(2):273-9. doi: https://doi.org/10.1093/ajcn/nqz104

Elferink H, Bruekers JP, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci. 2020;77(23):4799-826. doi: https://doi.org/10.1007/s00018-020-03564-1

Anguita-Ruiz A, Aguilera CM, Gil Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients. 2020;12(9):2689. doi: https://doi.org/10.3390/nu12092689

Harvey L, Ludwig T, Hou AQ, Hock QS, Tan ML, Osatakul S, et al. Prevalence, cause and diagnosis of lactose intolerance in children aged 1-5 years: a systematic review of 1995-2015 literature. Asia Pac J Clin Nutr. 2018;27(1):29-46. doi: https://doi.org/10.6133/apjcn.022017.05

Reed RC, Pacheco MC. Clinical and Histopathologic Predictors of Disaccharidase Deficiency in Duodenal Biopsy Specimens. Am J Clin Pathol. 2019;152(6):742-6. doi: https://doi.org/10.1093/ajcp/aqz091

Saura-Carretero Z, Villanueva-Alarcón M, Pérez-Olaso O, Aleixandre-Górriz I, Real-Fernández A, Sánchez-Thevenet P, et al. Giardiosis en población pediátrica de la provincia de Castellón: clínica e impacto [Giardiasis in a paediatric population of the province of castellon. Clinical details and impact]. An Pediatr (Engl Ed). 2021;94(5):278-84. Spanish. doi: https://doi.org/10.1016/j.anpedi.2020.06.023

Solaymani-Mohammadi S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front Immunol. 2022;13:817468. doi: https://doi.org/10.3389/fimmu.2022.817468

Heine RG, AlRefaee F, Bachina P, De Leon JC, Geng L, Gong S, et al. Lactose intolerance and gastrointestinal cow's milk allergy in infants and children - common misconceptions revisited. World Allergy Organ J. 2017;10(1):41. doi: https://doi.org/10.1186/s40413-017-0173-0

Vemuri R, Gundamaraju R, Shastri MD, Shukla SD, Kalpurath K, Ball M, et al. Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective. Biomed Res Int. 2018;2018:4178607. doi: https://doi.org/10.1155/2018/4178607

Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11(5):411-55. doi: https://doi.org/10.3920/BM2020.0057

Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24. doi: https://doi.org/10.1007/s00394-017-1445-8

Sakata T. Pitfalls in short-chain fatty acid research: A methodological review. Anim Sci J. 2019;90(1):3-13. doi: https://doi.org/10.1111/asj.13118

Fernández-Veledo S, Vendrell J. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? Rev Endocr Metab Disord. 2019;20(4):439-47. doi: https://doi.org/10.1007/s11154-019-09513-z

Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. doi: https://doi.org/10.1186/s40168-019-0704-8

Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13(1):1-24. doi: https://doi.org/10.1080/19490976.2021.1897212

He T, Priebe MG, Vonk RJ, Welling GW. Identification of bacteria with beta-galactosidase activity in faeces from lactase non-persistent subjects. FEMS Microbiol Ecol. 2005;54(3):463-9. doi: https://doi.org/10.1016/j.femsec.2005.06.001

Xin Y, Guo T, Zhang Y, Wu J, Kong J. A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol. 2019;103(20):8439-48. doi: https://doi.org/10.1007/s00253-019-10092-x

Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol. 2019;37(2):179-85. doi: https://doi.org/10.1038/s41587-018-0008-8

Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. doi: https://doi.org/10.1136/bmj.k2179

Azcarate-Peril MA, Roach J, Marsh A, Chey WD, Sandborn WJ, Ritter AJ, et al. A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides. Gut Microbes. 2021;13(1):1957536. doi: https://doi.org/10.1080/19490976.2021.1957536

Salli K, Anglenius H, Hirvonen J, Hibberd AA, Ahonen I, Saarinen MT, et al. The effect of 2'-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci Rep. 2019;9(1):13232. doi: https://doi.org/10.1038/s41598-019-49497-z

Van den Abbeele P, Sprenger N, Ghyselinck J, Marsaux B, Marzorati M, Rochat F. A Comparison of the In Vitro Effects of 2'Fucosyllactose and Lactose on the Composition and Activity of Gut Microbiota from Infants and Toddlers. Nutrients. 2021;13(3):726. doi: https://doi.org/10.3390/nu13030726

Xue H, Zhang M, Ma J, Chen T, Wang F, Tang X. Lactose-Induced Chronic Diarrhea Results From Abnormal Luminal Microbial Fermentation and Disorder of Ion Transport in the Colon. Front Physiol. 2020;11:877. doi: https://doi.org/10.3389/fphys.2020.00877

Downloads

Published

2024-07-17

How to Cite

1.
Usachova OV, Vorobiova NV, Silina EA, Matvieieva TB. The role of carbohydrate malabsorption syndrome in the pathogenesis of rotavirus diarrhea (a literature review). Zaporozhye Medical Journal [Internet]. 2024Jul.17 [cited 2025Jan.15];26(4):325-30. Available from: http://zmj.zsmu.edu.ua/article/view/302524