The role of carbohydrate malabsorption syndrome in the pathogenesis of rotavirus diarrhea (a literature review)
DOI:
https://doi.org/10.14739/2310-1210.2024.4.302524Keywords:
rotavirus infection, pathogenesis, diarrhea, carbohydrate malabsorption syndrome, lactase deficiency, childrenAbstract
The aim – to summarize literature data on the pathogenetic mechanisms of the diarrheal syndrome development in children with rotavirus infection and to determine the role of carbohydrate malabsorption syndrome in it through a complex analysis of literature reviews and empirical studies.
Rotavirus infection (RVI) remains the main cause of severe dehydrating gastroenteritis in children under five years of age. One of the most important pathogenetic links of rotavirus gastroenteritis is the development of osmotic diarrhea induced by carbohydrate malabsorption syndrome. Its development is associated with disaccharidase insufficiency and impaired absorption of monosaccharides in the small intestine.
Carbohydrate malabsorption syndrome is found in 67.0–98.3 % of children with RVI. Its laboratory manifestations (an increase in levels of fecal carbohydrates and lactose) are observed starting from the first days of the disease, and the maximum indicators are recorded in the period from the fifth to the seventh day.
Conclusions. Carbohydrate malabsorption syndrome is observed in the absolute majority of children with RVI, and its maximum severity is noted from the fifth to the seventh day of the disease, being realized mainly due to lactase deficiency. The severity of carbohydrate malabsorption syndrome can be influenced by concomitant pathological conditions, that lead to a decrease in the activity of disaccharidases in the small intestine, and the metabolic activity of the intestinal microbiota.
References
Fischer TK, Rasmussen LD, Fonager J. Taking gastro-surveillance into the 21st century. J Clin Virol. 2019;117:43-8. doi: https://doi.org/10.1016/j.jcv.2019.05.013
Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF, Ahmed T, et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018 Oct 1;172(10):958-65. doi: https://doi.org/10.1001/jamapediatrics.2018.1960
Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primers. 2017;3:17083. doi: https://doi.org/10.1038/nrdp.2017.83
Arístegui J, Alfayate-Miguelez S, Carazo-Gallego B, Garrote E, Díaz-Munilla L, Mendizabal M, et al. Clinical characteristics, health care resource utilization and direct medical costs of Rotavirus hospitalizations in Spain (2013-2018). Hum Vaccin Immunother. 2022;18(5):2046961. doi: https://doi.org/10.1080/21645515.2022.2046961
Johansen RL, Schouw CH, Madsen TV, Nielsen XC, Engberg J. Epidemiology of gastrointestinal infections: lessons learned from syndromic testing, Region Zealand, Denmark. Eur J Clin Microbiol Infect Dis. 2023;42(9):1091-101. doi: https://doi.org/10.1007/s10096-023-04642-5
Chernyshova L, Teslenko M, Radionova N, Demchishina I, Kotlik L, Sadkova O, et al. [Longitudinal Observation on Rotavirus Infection in Children Aged under 5 Years Old Hospitalized in 2 Hospitals of Ukraine in 2006-2015]. Child's health. 2016;(7):117-23. Ukrainian. doi: https://doi.org/10.22141/2224-0551.7.75.2016.86736
Govoruha OY., Turitska TG, Sidorenko GG. [Monitoring of rotavirus infection in the population of pavlograd]. Bulletin of problems biology and medicine. 2022;(1):81-5. Ukrainian. doi: https://doi.org/10.29254/2077-4214-2020-1-155-81-85.
Hu Y, Gui L, Chang J, Liu J, Xu S, Deng C, et al. The incidence of infants with rotavirus enteritis combined with lactose intolerance. Pak J Pharm Sci. 2016;29(1 Suppl):321-3.
Vorobiova NV, Usachova OV. [Laboratory signs of carbohydrate malabsorption in early age children with rotavirus infection]. Pathologia. 2021;18(1):72-9. Ukrainian. doi: https://doi.org/10.14739/2310-1237.2021.1.228925
Misselwitz B, Butter M, Verbeke K, Fox MR. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut. 2019;68(11):2080-91. doi: https://doi.org/10.1136/gutjnl-2019-318404
Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to Dissect Gastrointestinal Virus-Host Interactions: What Have We Learned? Viruses. 2021;13(6):999. doi: https://doi.org/10.3390/v13060999
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence. 2021;12(1):1022-62. doi: https://doi.org/10.1080/21505594.2021.1903198
Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch. 2017;469(9):1093-105. doi: https://doi.org/10.1007/s00424-017-1987-x
Nezghoda I, Naumenko O, Asaulenko A, Onofriichuk O, Brovinska L, Kolesnyk A, et al. [The effectiveness of racecadotril in the treatment of rotavirus infection in children]. Aktualna infektolohiia. 2020;8(2):30-5. Ukrainian. doi: https://doi.org/10.22141/2312-413x.8.2.2020.199733
Dian Z, Sun Y, Zhang G, Xu Y, Fan X, Yang X, et al. Rotavirus-related systemic diseases: clinical manifestation, evidence and pathogenesis. Crit Rev Microbiol. 2021;47(5):580-95. doi: https://doi.org/10.1080/1040841X.2021.1907738
Paparo L, Tripodi L, Bruno C, Pisapia L, Damiano C, Pastore L, et al. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci Rep. 2020;10(1):12636. doi: https://doi.org/10.1038/s41598-020-69533-7
Dong D, Xie W, Liu M. Alteration of cell junctions during viral infection. Thorac Cancer. 2020;11(3):519-25. doi: https://doi.org/10.1111/1759-7714.13344
Chen H, Song L, Li G, Chen W, Zhao S, Zhou R, et al. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes. 2017;53(3):367-76. doi: https://doi.org/10.1007/s11262-017-1444-0
Garas M, Marusyk U. [Modern etiopathogenetic and clinical features of rotavirus infection in children]. Aktualna infektolohiia. 2019;7(1):13-6. Ukrainian. doi: https://doi.org/10.22141/2312-413x.7.1.2019.159223
Kashyap G, Singh R, Malik YS, Agrawal RK, Singh KP, Kumar P, et al. Experimental bovine rotavirus-A (RV-A)infection causes intestinal and extra-intestinal pathology in suckling mice. Microb Pathog. 2018;121:22-6. doi: https://doi.org/10.1016/j.micpath.2018.04.038
Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Koopmans MP, Büller HA, et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol. 2003;77(24):13005-16. doi: https://doi.org/10.1128/jvi.77.24.13005-13016.2003
Soliman M, Seo JY, Baek YB, Park JG, Kang MI, Cho KO, et al. Opposite Effects of Apoptotic and Necroptotic Cellular Pathways on Rotavirus Replication. J Virol. 2022;96(1):e0122221. doi: https://doi.org/10.1128/JVI.01222-21
Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, et al. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol. 2017;19(3). doi: https://doi.org/10.1111/cmi.12670
Zhao Y, Hu N, Jiang Q, Zhu L, Zhang M, Jiang J, et al. Protective effects of sodium butyrate on rotavirus inducing endoplasmic reticulum stress-mediated apoptosis via PERK-eIF2α signaling pathway in IPEC-J2 cells. J Anim Sci Biotechnol. 2021;12(1):69. doi: https://doi.org/10.1186/s40104-021-00592-0
Guerrero R, Guerrero C, Acosta O. Induction of Cell Death in the Human Acute Lymphoblastic Leukemia Cell Line Reh by Infection with Rotavirus Isolate Wt1-5. Biomedicines. 2020;8(8):242. doi: https://doi.org/10.3390/biomedicines8080242
Guerrero RA, Guerrero CA, Guzmán F, Acosta O. Assessing the oncolytic potential of rotavirus on mouse myeloma cell line Sp2/0-Ag14. Biomedica. 2020;40(2):362-81. doi: https://doi.org/10.7705/biomedica.4916
Wanes D, Husein DM, Naim HY. Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives. Nutrients. 2019;11(2):461. doi: https://doi.org/10.3390/nu11020461
Elferink H, Bruekers JP, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci. 2020;77(23):4799-826. doi: https://doi.org/10.1007/s00018-020-03564-1
Julio-Gonzalez LC, Moreno FJ, Jimeno ML, Doyagüez EG, Olano A, Corzo N, et al. Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Res Int. 2021;139:109940. doi: https://doi.org/10.1016/j.foodres.2020.109940
Burke M. Carbohydrate Intolerance and Disaccharidase Measurement - a Mini-Review. Clin Biochem Rev. 2019;40(4):167-74. doi: https://doi.org/10.33176/AACB-19-00025
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol. 2018;6(1):33-45. doi: https://doi.org/10.1016/j.jcmgh.2018.02.009
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses. 2022;14(5):875. doi: https://doi.org/10.3390/v14050875
Tomczonek-Moruś J, Wojtasik A, Zeman K, Smolarz B, Bąk-Romaniszyn L. 13910C>T and 22018G>A LCT gene polymorphisms in diagnosing hypolactasia in children. United European Gastroenterol J. 2019;7(2):210-6. doi: https://doi.org/10.1177/2050640618814136
Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr. 2019;110(2):273-9. doi: https://doi.org/10.1093/ajcn/nqz104
MacGillivray S, Fahey T, McGuire W. Lactose avoidance for young children with acute diarrhoea. Cochrane Database Syst Rev. 2013;2013(10):CD005433. doi: https://doi.org/10.1002/14651858.CD005433.pub2
Ivanko OH, Bondarenko VM. [Cluster analysis of the acute diarrhea causes in young children admitted to the infectious diseases unit]. Pathologia 2021;18(2):196-202. Ukrainian. doi: https://doi.org/10.14739/2310-1237.2021.2.229500
Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch. 2017;469(9):1093-105. doi: https://doi.org/10.1007/s00424-017-1987-x
Kirsanova T, Kuznetsov S. Secondary lactase deficiency and its correction in infants ill with rotavirus infection. Annals of Mechnikov Institute. 2016;(4):107-11. Ukrainian. Available from: https://journals.uran.ua/ami/article/view/192012
He T, Venema K, Priebe MG, Welling GW, Brummer RJ, Vonk RJ. The role of colonic metabolism in lactose intolerance. Eur J Clin Invest. 2008;38(8):541-7. doi: https://doi.org/10.1111/j.1365-2362.2008.01966.x
Wanes D, Husein DM, Naim HY. Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives. Nutrients. 2019;11(2):461. doi: https://doi.org/10.3390/nu11020461
Forsgård RA. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr. 2019;110(2):273-9. doi: https://doi.org/10.1093/ajcn/nqz104
Elferink H, Bruekers JP, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci. 2020;77(23):4799-826. doi: https://doi.org/10.1007/s00018-020-03564-1
Anguita-Ruiz A, Aguilera CM, Gil Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients. 2020;12(9):2689. doi: https://doi.org/10.3390/nu12092689
Harvey L, Ludwig T, Hou AQ, Hock QS, Tan ML, Osatakul S, et al. Prevalence, cause and diagnosis of lactose intolerance in children aged 1-5 years: a systematic review of 1995-2015 literature. Asia Pac J Clin Nutr. 2018;27(1):29-46. doi: https://doi.org/10.6133/apjcn.022017.05
Reed RC, Pacheco MC. Clinical and Histopathologic Predictors of Disaccharidase Deficiency in Duodenal Biopsy Specimens. Am J Clin Pathol. 2019;152(6):742-6. doi: https://doi.org/10.1093/ajcp/aqz091
Saura-Carretero Z, Villanueva-Alarcón M, Pérez-Olaso O, Aleixandre-Górriz I, Real-Fernández A, Sánchez-Thevenet P, et al. Giardiosis en población pediátrica de la provincia de Castellón: clínica e impacto [Giardiasis in a paediatric population of the province of castellon. Clinical details and impact]. An Pediatr (Engl Ed). 2021;94(5):278-84. Spanish. doi: https://doi.org/10.1016/j.anpedi.2020.06.023
Solaymani-Mohammadi S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front Immunol. 2022;13:817468. doi: https://doi.org/10.3389/fimmu.2022.817468
Heine RG, AlRefaee F, Bachina P, De Leon JC, Geng L, Gong S, et al. Lactose intolerance and gastrointestinal cow's milk allergy in infants and children - common misconceptions revisited. World Allergy Organ J. 2017;10(1):41. doi: https://doi.org/10.1186/s40413-017-0173-0
Vemuri R, Gundamaraju R, Shastri MD, Shukla SD, Kalpurath K, Ball M, et al. Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective. Biomed Res Int. 2018;2018:4178607. doi: https://doi.org/10.1155/2018/4178607
Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11(5):411-55. doi: https://doi.org/10.3920/BM2020.0057
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24. doi: https://doi.org/10.1007/s00394-017-1445-8
Sakata T. Pitfalls in short-chain fatty acid research: A methodological review. Anim Sci J. 2019;90(1):3-13. doi: https://doi.org/10.1111/asj.13118
Fernández-Veledo S, Vendrell J. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? Rev Endocr Metab Disord. 2019;20(4):439-47. doi: https://doi.org/10.1007/s11154-019-09513-z
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. doi: https://doi.org/10.1186/s40168-019-0704-8
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13(1):1-24. doi: https://doi.org/10.1080/19490976.2021.1897212
He T, Priebe MG, Vonk RJ, Welling GW. Identification of bacteria with beta-galactosidase activity in faeces from lactase non-persistent subjects. FEMS Microbiol Ecol. 2005;54(3):463-9. doi: https://doi.org/10.1016/j.femsec.2005.06.001
Xin Y, Guo T, Zhang Y, Wu J, Kong J. A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol. 2019;103(20):8439-48. doi: https://doi.org/10.1007/s00253-019-10092-x
Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol. 2019;37(2):179-85. doi: https://doi.org/10.1038/s41587-018-0008-8
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. doi: https://doi.org/10.1136/bmj.k2179
Azcarate-Peril MA, Roach J, Marsh A, Chey WD, Sandborn WJ, Ritter AJ, et al. A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides. Gut Microbes. 2021;13(1):1957536. doi: https://doi.org/10.1080/19490976.2021.1957536
Salli K, Anglenius H, Hirvonen J, Hibberd AA, Ahonen I, Saarinen MT, et al. The effect of 2'-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci Rep. 2019;9(1):13232. doi: https://doi.org/10.1038/s41598-019-49497-z
Van den Abbeele P, Sprenger N, Ghyselinck J, Marsaux B, Marzorati M, Rochat F. A Comparison of the In Vitro Effects of 2'Fucosyllactose and Lactose on the Composition and Activity of Gut Microbiota from Infants and Toddlers. Nutrients. 2021;13(3):726. doi: https://doi.org/10.3390/nu13030726
Xue H, Zhang M, Ma J, Chen T, Wang F, Tang X. Lactose-Induced Chronic Diarrhea Results From Abnormal Luminal Microbial Fermentation and Disorder of Ion Transport in the Colon. Front Physiol. 2020;11:877. doi: https://doi.org/10.3389/fphys.2020.00877
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)