Accelerated biological ageing as a complication of cancer therapy

Authors

DOI:

https://doi.org/10.14739/2310-1210.2024.3.302542

Keywords:

cancer, biological aging, replicative aging, antitumor therapy, markers of cellular senescence, coronary artery calcium

Abstract

Aim. The paper aimed to update the study on accelerated biological aging as a complication of cancer therapy with a focus on diagnosing and prognosing the disease course.

The authors independently searched scientific literature for the systematic review within databases PubMed, Scopus and Cochrane in the period from 2018 to 2024, using combinations of keywords “cancer”, “biological aging”, “replicative aging”, “antitumor therapy”, “markers of cellular senescence”, “coronary artery calcium” and selected full-text publications written in English and Ukrainian with level 1–3 evidence.

People affected by cancer grow old faster. This could be related to malignant growth biology as well as to methods of anticancer therapy received. Cytostatics, targeted, hormonal and immune drugs damage not only malignant, but also benign cells, which leads to violations of replication with sustained cell cycle arrest and other phenotypic signs – macromolecular damage, metabolic changes, production of a specific senescence-associated secretome. Clinically, this is manifested by reduced work capacity, weakness, chronic organ dysfunction, cardiovascular disorders, progression of coronary atherosclerosis, hypertension, diabetes, dyslipidemia, sarcopenia, cognitive disorders, a de novo development of tumors and premature death. Biological markers of cellular senescence include the expression of lipofuscin, Ki67, p21 WAF1/Cip1 or p16 INK4a. A clinical marker of aging is the deposition of calcium salts within coronary arteries based on the Agatston score detected using multidetector computed tomography.

Conclusions. A better understanding of the cancer consequences associated with accelerated biological aging might suggest new therapeutic strategies and improve the quality of life among cancer survivors. Rehabilitation measures through changes in diet, caloric restriction, aerobic exercises and pharmacological senolytic therapy should be a part of a patient’s daily routine after completion of radical cancer treatment.

Author Biographies

O. O. Kovalov, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Oncology and Oncosurgery

M. Yu. Kolesnyk, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD DSc, Professor of the Department of Therapy and Cardiology, Educational and Scientific Institute of Postgraduate Education

O. V. Hancheva, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, DSc, Professor, Head of the Department of Pathological Physiology with the Course of Normal Physiology

I. F. Bielenichev, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

PhD, DSc, Professor, Head of the Department of Pharmacology and Medical Formulation with the Course of Normal Physiology

K. O. Kovalov, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

MD, PhD, Assistant of the Department of General Surgery and Postgraduate Surgical Education

References

Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. J Oncol. 2022;2022:5969536. doi: https://doi.org/10.1155/2022/5969536

Schosserer M, Grillari J, Breitenbach M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol. 2017;7:278. doi: https://doi.org/10.3389/fonc.2017.00278

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621. doi: https://doi.org/10.1016/0014-4827(61)90192-6

Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022;7(1):391. doi: https://doi.org/10.1038/s41392-022-01251-0

Bhatia R, Holtan S, Jurdi NE, Prizment A, Blaes A. Do Cancer and Cancer Treatments Accelerate Aging? Curr Oncol Rep. 2022;24(11):1401-12. doi: https://doi.org/10.1007/s11912-022-01311-2

Von Ah D, Crouch A, Arthur E, Yang Y, Nolan T. Association Between Cardiovascular Disease and Cognitive Dysfunction in Breast Cancer Survivors. Cancer Nurs. 2023;46(2):E122-E128. doi: https://doi.org/10.1097/NCC.0000000000001083

Muhandiramge J, Zalcberg JR, van Londen GJ, Warner ET, Carr PR, Haydon A, et al. Cardiovascular Disease in Adult Cancer Survivors: a Review of Current Evidence, Strategies for Prevention and Management, and Future Directions for Cardio-oncology. Curr Oncol Rep. 2022;24(11):1579-92. doi: https://doi.org/10.1007/s11912-022-01309-w

Wang S, Prizment A, Thyagarajan B, Blaes A. Cancer Treatment-Induced Accelerated Aging in Cancer Survivors: Biology and Assessment. Cancers (Basel). 2021;13(3):427. doi: https://doi.org/10.3390/cancers13030427

Berben L, Floris G, Wildiers H, Hatse S. Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers (Basel). 2021;13(6):1400. doi: https://doi.org/10.3390/cancers13061400

Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer. 2020;6(10):838-57. doi: https://doi.org/10.1016/j.trecan.2020.05.004

Hill A, Sadda J, LaBarge MA, Hurria A. How cancer therapeutics cause accelerated aging: Insights from the hallmarks of aging. J Geriatr Oncol. 2020;11(2):191-3. doi: https://doi.org/10.1016/j.jgo.2019.03.007

Pedrosa MB, Barbosa S, Vitorino R, Ferreira R, Moreira-Gonçalves D, Santos LL. Chemotherapy-Induced Molecular Changes in Skeletal Muscle. Biomedicines. 2023;11(3):905. doi: https://doi.org/10.3390/biomedicines11030905

Lam T, Birzniece V, McLean M, Gurney H, Hayden A, Cheema BS. The Adverse Effects of Androgen Deprivation Therapy in Prostate Cancer and the Benefits and Potential Anti-oncogenic Mechanisms of Progressive Resistance Training. Sports medicine - open. 2020;6(1):13. doi: https://doi.org/10.1186/s40798-020-0242-8

Ruhland MK, Alspach E. Senescence and immunoregulation in the tumor microenvironment. Front Cell Dev Biol. 2021;9:754069. doi: https://doi.org/10.3389/fcell.2021.754069

Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. Nat Aging. 2023;3(6):642-60. doi: https://doi.org/10.1038/s43587-023-00416-y

Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel). 2023;15(17):4301. doi: https://doi.org/10.3390/cancers15174301

Yarosh R, Roesler MA, Murray T, Cioc A, Hirsch B, Nguyen P, et al. Risk factors for de novo and therapy-related myelodysplastic syndromes (MDS). Cancer Causes Control. 2021;32(3):241-50. doi: https://doi.org/10.1007/s10552-020-01378-x

Lim H, Im M, Seo ES, Cho HW, Ju HY, Yoo KH, et al. Tandem High-Dose Chemotherapy Increases the Risk of Secondary Malignant Neoplasm in Pediatric Solid Tumors. Cancer Res Treat. 2024;56(2):642-51. doi: https://doi.org/10.4143/crt.2023.999

Murray J, Bennett H, Bezak E, Perry R. The role of exercise in the prevention of cancer therapy-related cardiac dysfunction in breast cancer patients undergoing chemotherapy: systematic review. Eur J Prev Cardiol. 2022;29(3):463-72. doi: https://doi.org/10.1093/eurjpc/zwab006

Chang L, Weiner LS, Hartman SJ, Horvath S, Jeste D, Mischel PS, Kado DM. Breast cancer treatment and its effects on aging. J Geriatr Oncol. 2019;10(2):346-55. doi: https://doi.org/10.1016/j.jgo.2018.07.010

Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int. 2023;23(1):197. doi: https://doi.org/10.1186/s12935-023-03041-2

Khosrow-Khavar F, Filion KB, Bouganim N, Suissa S, Azoulay L. Aromatase Inhibitors and the Risk of Cardiovascular Outcomes in Women With Breast Cancer: A Population-Based Cohort Study. Circulation. 2020;141(7):549-59. doi: https://doi.org/10.1161/CIRCULATIONAHA.119.044750

Alomar O, Okunade KS, Varkaneh HK, Ghourab G, Alsourani JA, Alras KA, et al. The Effect of Anastrozole on the Lipid Profile: Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin Ther. 2022;44(9):1214-24. doi: https://doi.org/10.1016/j.clinthera.2022.08.003

Wang X, Zhu A, Wang J, Ma F, Liu J, Fan Y, et al. Steroidal aromatase inhibitors have a more favorable effect on lipid profiles than nonsteroidal aromatase inhibitors in postmenopausal women with early breast cancer: a prospective cohort study. Ther Adv Med Oncol. 2020;12:1758835920925991. doi: https://doi.org/10.1177/1758835920925991

Kamaraju S, Shi Y, Smith E, Nattinger AB, Laud P, Neuner J. Are aromatase inhibitors associated with higher myocardial infarction risk in breast cancer patients? A Medicare population-based study. Clin Cardiol. 2019;42(1):93-100. doi: https://doi.org/10.1002/clc.23114

Shekarforoush S, Koohpeyma F, Safari F. Alteration at transcriptional level of cardiac renin-angiotensin system by letrozole treatment. Acta Cardiol. 2019;74(2):109-13. doi: https://doi.org/10.1080/00015385.2018.1472840

Yin Y, Jin L, Chu M, Zhou Y, Tu S, Cheng Y, et al. Association between endocrine therapy and cognitive decline in breast cancer based on propensity score matching. Front Med (Lausanne). 2023 Jan 26;10:1132287. doi: https://doi.org/10.3389/fmed.2023.1132287

Barber M, Nguyen LS, Wassermann J, Spano JP, Funck-Brentano C, Salem JE. Cardiac arrhythmia considerations of hormone cancer therapies. Cardiovasc Res. 2019;115(5):878-94. doi: https://doi.org/10.1093/cvr/cvz020

He T, Li X, Li J, Wang Z, Fan Y, Li X, et al. Lipid Changes During Endocrine Therapy in Breast Cancer Patients: The Results of a 5-Year Real-World Retrospective Analysis. Front Oncol. 2022;11:670897. doi: https://doi.org/10.3389/fonc.2021.670897

Guida JL, Ahles TA, Belsky D, Campisi J, Cohen HJ, DeGregori J, et al. Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors. J Natl Cancer Inst. 2019;111(12):1245-54. doi: https://doi.org/10.1093/jnci/djz136

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813-27. doi: https://doi.org/10.1016/j.cell.2019.10.005

Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology (Basel). 2020;9(12):485. doi: https://doi.org/10.3390/biology9120485

Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev. 2022;81:101743. doi: https://doi.org/10.1016/j.arr.2022.101743

Kohli J, Wang B, Brandenburg SM, Basisty N, Evangelou K, Varela-Eirin M, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16(5):2471-98. doi: https://doi.org/10.1038/s41596-021-00505-5

St Sauver JL, Weston SA, Atkinson EJ, Mc Gree ME, Mielke MM, White TA, et al. Biomarkers of cellular senescence and risk of death in humans. Aging Cell. 2023;22(12):e14006. doi: https://doi.org/10.1111/acel.14006

Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel). 2022;12(9):1332. doi: https://doi.org/10.3390/life12091332

Wagner S, Prigge ES, Wuerdemann N, Reder H, Bushnak A, Sharma SJ, et al. Evaluation of p16INK4a expression as a single marker to select patients with HPV-driven oropharyngeal cancers for treatment de-escalation. Br J Cancer. 2020;123(7):1114-22. doi: https://doi.org/10.1038/s41416-020-0964-x

Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D, et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell. 2017;16(1):192-7. doi: https://doi.org/10.1111/acel.12545

de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Front Cell Dev Biol. 2021;9:623175. doi: https://doi.org/10.3389/fcell.2021.623175

Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013;5(1):37-50. doi: https://doi.org/10.18632/aging.100527

Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593. doi: https://doi.org/10.3389/fcell.2021.645593

Li Q, Liu F, Tang Y, Lee S, Lang C, Bai L, Xia Y. The Distribution of Cardiovascular-Related Comorbidities in Different Adult-Onset Cancers and Related Risk Factors: Analysis of 10 Year Retrospective Data. Front Cardiovasc Med. 2021;8:695454. doi: https://doi.org/10.3389/fcvm.2021.695454

Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837-47. doi: https://doi.org/10.1161/01.cir.97.18.1837

Visseren FL, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227-37. doi: https://doi.org/10.1093/eurheartj/ehab484

Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological Versus Chronological Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(8):919-30. doi: https://doi.org/10.1016/j.jacc.2019.11.062

Obisesan OH, Osei AD, Uddin SM, Dzaye O, Blaha MJ. An Update on Coronary Artery Calcium Interpretation at Chest and Cardiac CT. Radiol Cardiothorac Imaging. 2021;3(1):e200484. doi: https://doi.org/10.1148/ryct.2021200484

Mohan J, Bhatti K, Tawney A, Zeltser R. Coronary Artery Calcification. [Updated 2023 Nov 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519037/

Mitchell JD, Cehic DA, Morgia M, Bergom C, Toohey J, Guerrero PA, et al. Cardiovascular Manifestations From Therapeutic Radiation: A Multidisciplinary Expert Consensus Statement From the International Cardio-Oncology Society. JACC CardioOncol. 2021;3(3):360-80. doi: https://doi.org/10.1016/j.jaccao.2021.06.003

El-Sabbagh A, Osman MM, Fesler M, Helmy T, Parker N, Muzaffar R. Chemotherapy-induced coronary arteries calcium score deterioration as detected with unenhanced CT portion of FDG PET/CT. Am J Nucl Med Mol Imaging. 2018;8(5):303-10.

Zhou F, Zhu X, Liu Y, Sun Y, Zhang Y, Cheng D, et al. Coronary atherosclerosis and chemotherapy: From bench to bedside. Front Cardiovasc Med. 2023;10:1118002. doi: https://doi.org/10.3389/fcvm.2023.1118002

Cadeddu Dessalvi C, Deidda M, Giorgi M, Colonna P. Vascular Damage - Coronary Artery Disease. J Cardiovasc Echogr. 2020;30(Suppl 1):S11-S16. doi: https://doi.org/10.4103/jcecho.jcecho_3_19

Cardinale D, Iacopo F, Cipolla CM. Cardiotoxicity of Anthracyclines. Front Cardiovasc Med. 2020;7:26. https://doi.org/10.3389/fcvm.2020.00026

Published

2024-05-31

How to Cite

1.
Kovalov OO, Kolesnyk MY, Hancheva OV, Bielenichev IF, Kovalov KO. Accelerated biological ageing as a complication of cancer therapy. Zaporozhye Medical Journal [Internet]. 2024May31 [cited 2024Jul.25];26(3):247-53. Available from: http://zmj.zsmu.edu.ua/article/view/302542