A cardiometabolic patient and microbiota

Authors

DOI:

https://doi.org/10.14739/2310-1210.2025.3.321475

Keywords:

intestinal microbiota, cardiovascular diseases, abdominal obesity, hypertension, diabetes mellitus, atherosclerosis, short-chain fatty acids, intestinal dysbiosis, probiotics, prebiotics

Abstract

Aim: to determine associations between the microbiota and a cardiometabolic patient’s condition and to identify key mechanisms of the microbiota influence on the cardiovascular system and metabolic profile based on summarizing the scientific literature.

Material and methods. A descriptive-comparative analysis was performed to study associations between cardiometabolic patient’s condition and microbiota. The work was based on a substantive review of modern scientific literature, which allowed us to identify key aspects of this interaction and its impact on metabolic and cardiovascular processes. To achieve the goal, the following research methods were used: search method, comparative analysis, methods of generalization and synthesis.

Results. The article presents the study results indicating the pathology development such as abdominal obesity, diabetes mellitus, atherosclerosis, and arterial hypertension induced by disturbances in the microbiota composition (dysbiosis). Studying the probiotic and prebiotic effects provides perspectives to correct dysbiosis and improve the intestinal microflora functions. Probiotics, such as Lactobacilli and Bifidobacteria, are capable of microbiota balance normalization, reducing the risk for cardiovascular complications, as well as improving lipid metabolism and reinforcing the intestinal barrier function. Prebiotics help stimulate the beneficial bacteria colonization and the production of key metabolites such as short-chain fatty acids.

Conclusions. The intestinal microbiota has been shown to play a key role in the development and progression of numerous pathological conditions, such as cardiovascular disease, obesity, diabetes mellitus, atherosclerosis, and hypertension. Its effects are mediated by mechanisms, including intestinal wall permeability variations, pro-inflammatory process activation, and metabolic activity alterations. One of the important factors is a decreased count of microorganisms that produce short-chain fatty acids, resulting in impaired metabolism and an increased risk for cardiometabolic diseases.

Author Biography

T. V. Bogoslav, Zaporizhzhia State Medical and Pharmaceutical University

MD, PhD, Associate Professor of the Department of Internal Diseases No. 1

References

Reiter-Brennan C, Dzaye O, Davis D, Blaha M, Eckel RH. Comprehensive Care Models for Cardiometabolic Disease. Curr Cardiol Rep. 2021;23(3):22. doi: https://doi.org/10.1007/s11886-021-01450-1

Marques MD, Pires R, Perdigao M, Sousa L, Fonseca C, Pinho LG, et al. Patient-centered care for patients with cardiometabolic diseases: An integrative review. J Pers Med. 2021;11(12):1289. doi: https://doi.org/10.3390/jpm11121289

Melnychuk IO. [Gut microbiota and cardiometabolic risk factors in coronary artery disease patients with atrial fibrillation]. Klinichna ta profilaktychna medytsyna. 2023;(4):57-65. Ukrainian. doi: https://doi.org/10.31612/2616-4868.4(26).2023.09

Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed. 2022;3(1):30. doi: https://doi.org/10.1186/s43556-022-00091-2

He MQ, Wang JY, Wang Y, Sui J, Zhang M, Ding X, et al. High-fat diet-induced adipose tissue expansion occurs prior to insulin resistance in C57BL/6J mice. Chronic Dis Transl Med. 2020;6(3):198-207. doi: https://doi.org/10.1016/j.cdtm.2020.06.003

Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152-61. doi: https://doi.org/10.1002/jcp.27603

El-Mowafy M, Elgaml A, El-Mesery M, Sultan S, Ahmed TA, Gomaa AI, et al. Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. Biology (Basel). 2021;10(1):55. doi: https://doi.org/10.3390/biology10010055

Marconcin P, Ihle A, Werneck AO, Gouveia ER, Ferrari G, Peralta M, et al. The Association of Healthy Lifestyle Behaviors with Overweight and Obesity among Older Adults from 21 Countries. Nutrients. 2021;13(2):315. doi: https://doi.org/10.3390/nu13020315

Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N Engl J Med. 2019;381(25):2440-50. doi: https://doi.org/10.1056/NEJMsa1909301

Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286-300. doi: https://doi.org/10.1136/postgradmedj-2015-133285

Tomasics G, Schandl L, Polyák A, Winkler GA. diabetes mellitus és a bélmikrobiom. Orvosi Hetilap. 2023;164(25):981-7. doi: https://doi.org/10.1556/650.2023.32788

Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022;13(4):1106-26. doi: https://doi.org/10.14336/AD.2022.0104

Stepanov YM, Budzak IY. [Nature of intestinal microflora disorders in cardiovascular diseases]. Gastroenterologia 2023;57(2):115-22. Ukrainian. doi: https://doi.org/10.22141/2308-2097.57.2.2023.541

Brown EM, Clardy J, Xavier RJ. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe. 2023;31(2):173-86. doi: https://doi.org/10.1016/j.chom.2023.01.009

Walker RL, Vlamakis H, Lee JW, Besse LA, Xanthakis V, Vasan RS, et al. Population study of the gut microbiome: associations with diet, lifestyle, and cardiometabolic disease. Genome Med. 2021;13(1):188. doi: https://doi.org/10.1186/s13073-021-01007-5

Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev. 2021;101(2):683-731. doi: https://doi.org/10.1152/physrev.00049.2019

Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed Pharmacother. 2021;137:111334. doi: https://doi.org/10.1016/j.biopha.2021.111334

An H, Qian C, Cao X. Regulation of Toll-like receptor signaling in the innate immunity. Sci China Life Sci. 2010;53(1):34-43. doi: https://doi.org/10.1007/s11427-010-0011-x

Sokolova M, Yang K, Hansen SH, Louwe MC, Kummen M, Hov J, et al. NLRP3 inflammasome deficiency attenuates metabolic disturbances involving alterations in the gut microbial profile in mice exposed to high fat diet. Sci Rep. 2020;10(1):21006. doi: https://doi.org/10.1038/s41598-020-76497-1

Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, et al. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J. Biol Chem. 2020;295(4):969-80. doi: https://doi.org/10.1074/jbc.RA119.010816

Zhuang K, Shu X, Meng W, Zhang D. Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota. Eur J Nutr. 2024;63(5):1605-21. doi: https://doi.org/10.1007/s00394-024-03359-1

Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021;117:154712. doi: https://doi.org/10.1016/j.metabol.2021.154712

Moughaizel M, Dagher E, Jablaoui A, Thorin C, Rhimi M, Desfontis JC, et al. Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits. PLoS ONE. 2022;17(2):e0264215. doi: https://doi.org/10.1371/journal.pone.0264215

Chang AY, Skirbekk VF, Tyrovolas S, Kassebaum NJ, Dieleman JL. Measuring population ageing: an analysis of the global burden of disease study 2017. Lancet Public Health. 2019;4(3):e159-67. doi: https://doi.org/10.1016/s2468-2667(19)30019-2

Christovich A, Luo XM. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front Immunol. 2022;13:946248. doi: https://doi.org/10.3389/fimmu.2022.946248

Li X, Fan Z, Cui J, Li D, Lu J, Cui X, et al. Trimethylamine n-oxide in heart failure: A meta-analysis of prognostic value. Front Cardiovasc Med. 2022;9:817396. doi: https://doi.org/10.3389/fcvm.2022.817396

Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res. 2024;207:107321. doi: https://doi.org/10.1016/j.phrs.2024.107321

Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, et al. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr. 2023;15(1):235. doi: https://doi.org/10.1186/s13098-023-01207-6

He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356. doi: https://doi.org/10.3390/ijms21176356

Rodríguez-Daza MC, Daoust L, Boutkrabt L, Pilon G, Varin T, Dudonné S, et al. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep. 2020;10(1):2217. doi: https://doi.org/10.1038/s41598-020-58863-1

Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell metabolism. 2021;33(4):791-803. doi: https://doi.org/10.1016/j.cmet.2020.11.017

Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, et al. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim Nutr. 2021;7(1):11-6. doi: https://doi.org/10.1016/j.aninu.2020.11.003

Nemet I, Li XS, Haghikia A, Li L, Wilcox J, Romano KA, et al. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur Heart J. 2023;44(32):3085-96. doi: https://doi.org/10.1093/eurheartj/ehad333

Cosentino RG, Churilla JR, Josephson S, Molle-Rios Z, Hossain MJ, Prado WL, et al. Branched-chain amino acids and relationship with inflammation in youth with obesity: a randomized controlled intervention study. J Clin Endocrinol Metab. 2021;106(11):3129-39. doi: https://doi.org/10.1210/clinem/dgab538

Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:903570. doi: https://doi.org/10.3389/fcimb.2022.903570

Ikeda T, Nishida A, Yamano M, Kimura I. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacol Ther. 2022;239:108273. doi: https://doi.org/10.1016/j.pharmthera.2022.108273

Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne). 2023;14:1085041. doi: https://doi.org/10.3389/fendo.2023.1085041

Ringel C, Dittrich J, Gaudl A, Schellong P, Beuchel CF, Baber R, et al. Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome. Atherosclerosis. 2021;335:62-7. doi: https://doi.org/10.1016/j.atherosclerosis.2021.09.026

Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8(1):36. doi: https://doi.org/10.1186/s40168-020-00821-0

Koval SM, Yushko KO, Snihurska IO. [Gut microbiota and arterial hypertension (a literature review)]. Zaporozhye medical journal. 2020;22(4):561-7. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2020.4.208409

Juste C, Gérard P. Cholesterol-to-coprostanol conversion by the gut microbiota: what we know, suspect, and ignore. Microorganisms. 2021;9(9):1881. doi: https://doi.org/10.3390/microorganisms9091881

Liu Y, Xiao H, Wang Z, Pan Q, Zhao X, Lu B. Interactions between dietary cholesterol and intestinal flora and their effects on host health. Crit Rev Food Sci Nutr. 2025;65(3):494-506. doi: https://doi.org/10.1080/10408398.2023.2276883

Jin L, Shi X, Yang J, Zhao Y, Xue L, Xu L, et al. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell. 2021;12(5):346-59. doi: https://doi.org/10.1007/s13238-020-00785-9

Piccioni A, de Cunzo T, Valletta F, Covino M, Rinninella E, Raoul P, et al. Gut Microbiota and Environment in Coronary Artery Disease. Int J Environ Res Public Health. 2021;18(8):4242. doi: https://doi.org/10.3390/ijerph18084242

He X, Zhao S, Li Y. Faecalibacterium prausnitzii: A next-generation probiotic in gut disease improvement. Can J Infect Dis Med Microbiol. 2021;2021:6666114. doi: https://doi.org/10.1155/2021/6666114

Novakovic M, Rout A, Kingsley T, Kirchoff R, Singh A, Verma V, et al. Role of gut microbiota in cardiovascular diseases. World J Cardiol. 2020;12(4):110-22. doi: https://doi.org/10.4330/wjc.v12.i4.110

Tousoulis D, Guzik T, Padro T, Duncker DJ, De Luca G, Eringa E, et al. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovasc Res. 2022;118(16):3171-82. doi: https://doi.org/10.1093/cvr/cvac057

Wu H, Chiou J. Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients. 2021;13(8):2878. doi: https://doi.org/10.3390/nu13082878

El Hage R, Al-Arawe N, Hinterseher I. The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci. 2023;24(3):2399. doi: https://doi.org/10.3390/ijms24032399

Al-Rashidi HE. Gut microbiota and immunity relevance in eubiosis and dysbiosis. Saudi J Biol Sci. 2022;29(3):1628-43. doi: https://doi.org/10.1016/j.sjbs.2021.10.068

Britton RA, Hoffmann DE, Khoruts A. Probiotics and the Microbiome-How Can We Help Patients Make Sense of Probiotics? Gastroenterology. 2021;160(2):614-23. doi: https://doi.org/10.1053/j.gastro.2020.11.047

Additional Files

Published

2025-06-17

How to Cite

1.
Bogoslav TV. A cardiometabolic patient and microbiota. Zaporozhye Medical Journal [Internet]. 2025Jun.17 [cited 2025Jun.19];27(3):233-7. Available from: https://zmj.zsmu.edu.ua/article/view/321475