Evaluation of the NanoGraft biomaterial immunogenicity in maxillary sinus augmentation

Authors

DOI:

https://doi.org/10.14739/2310-1210.2025.6.335692

Keywords:

bone composite, immunogenicity, subantral augmentation, macrophages, osteogenesis, angiogenesis

Abstract

Aim. This study aimed to evaluate the immunogenicity of the Nano Graft biomaterial in biopsies obtained from the maxillary sinus augmentation zone using morphological and immunohistochemical assessment of the cellular response.

Materials and methods. The study included 22 patients with partial posterior edentulism who underwent open maxillary sinus floor elevation using the Nano Graft biomaterial. Biopsy samples collected at the time of implant placement were fixed, decalcified, and processed for histological and immunohistochemical analysis with the following markers: CD8 (cytotoxic T lymphocytes), FOXP3 (regulatory T cells), CD68 (macrophages/osteoclasts), CD163 (M2 macrophages), SATB2 (osteogenic cells), and CD34 (endothelial cells). Inflammatory activity was assessed using a semi-quantitative scale.

Results. Histological examination revealed fibrous connective tissue containing fibroblasts, microvascular structures, and signs of osteon formation and bone remodeling. Immunohistochemistry demonstrated a low-grade lymphohistiocytic infiltrate with scarce CD8+ cells and no detectable FOXP3+ regulatory T cells, indicating the absence of a pronounced immune response. An abundant presence of CD163+ M2 macrophages suggested polarization toward a regenerative phenotype. Strong SATB2 expression confirmed osteoinductive activity, while numerous CD34+ endothelial cells indicated active angiogenesis.

Conclusions. The Nano Graft biomaterial exhibited low immunogenicity, characterized by a mild CD8+ T-cell response, absence of FOXP3+ regulatory T cells, and predominance of anti-inflammatory M2 macrophages. Its osteogenic potential and pro-angiogenic effects support its biocompatibility and clinical applicability for maxillary sinus augmentation.

Author Biographies

O. S. Kosinov, Zaporizhzhia State Medical and Pharmaceutical University

MD, PhD student at the Department of Dentistry of Postgraduate Education

O. M. Mishchenko, Zaporizhzhia State Medical and Pharmaceutical University

MD, PhD, DSc, Professor, Head of the Department of Dentistry of Postgraduate Education

References

Baj A, Trapella G, Lauritano D, Candotto V, Mancini GE, Giannì AB. An overview on bone reconstruction of atrophic maxilla: success parameters and critical issues. J Biol Regul Homeost Agents. 2016 Apr-Jun;30(2 Suppl 1):209-15.

Solakoglu Ö, Götz W, Heydecke G, Schwarzenbach H. Histological and immunohistochemical comparison of two different allogeneic bone grafting materials for alveolar ridge reconstruction: A prospective randomized trial in humans. Clin Implant Dent Relat Res. 2019;21(5):1002-16. doi: https://doi.org/10.1111/cid.12824

Fretwurst T, Gad LM, Steinberg T, Schmal H, Zeiser R, Amler AK, et al. Detection of major histocompatibility complex molecules in processed allogeneic bone blocks for use in alveolar ridge reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018:S2212-4403(18)30054-3. doi: https://doi.org/10.1016/j.oooo.2018.01.018

Yang F, Liu H, Wei Y, Xue R, Liu Z, Chu X, Tian X, Yin L, Tang H. Antibacterial brush polypeptide coatings with anionic backbones. Acta Biomater. 2023 Jan 1;155:359-369. doi: https://doi.org/10.1016/j.actbio.2022.11.020

Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance. Front Immunol. 2019;10:93. doi: https://doi.org/10.3389/fimmu.2019.00093

Zhang Y, Louboutin JP, Zhu J, Rivera AJ, Emerson SG. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J Clin Invest. 2002;109(10):1335-44. doi: https://doi.org/10.1172/JCI14989

Gu Q, Yang H, Shi Q. Macrophages and bone inflammation. J Orthop Translat. 2017;10:86-93. doi: https://doi.org/10.1016/j.jot.2017.05.002

Baht GS, Vi L, Alman BA. The Role of the Immune Cells in Fracture Healing. Curr Osteoporos Rep. 2018;16(2):138-45. doi: https://doi.org/10.1007/s11914-018-0423-2

Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):557-63. doi: https://doi.org/10.1189/jlb.0710409

Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-37. doi: https://doi.org/10.1038/nri3073

Chow SK, Wong CH, Cui C, Li MM, Wong RM, Cheung WH. Modulating macrophage polarization for the enhancement of fracture healing, a systematic review. J Orthop Translat. 2022;36:83-90. doi: https://doi.org/10.1016/j.jot.2022.05.004

Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018;106:78-89. doi: https://doi.org/10.1016/j.bone.2015.10.019

Li J, Qu Y, Chu B, Wu T, Pan M, Mo D, et al. Research Progress on Biomaterials with Immunomodulatory Effects in Bone Regeneration. Adv Sci (Weinh). 2025 Sep;12(33):e01209. doi: https://doi.org/10.1002/advs.202501209

Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76(3):509-13. doi: https://doi.org/10.1189/jlb.0504272

Jewell CM, Collier JH. Biomaterial interactions with the immune system. Biomater Sci. 2019 Feb 26;7(3):713-714. doi: https://doi.org/10.1039/c8bm90063a

Batoon L, Millard SM, Raggatt LJ, Pettit AR. Osteomacs and Bone Regeneration. Curr Osteoporos Rep. 2017;15(4):385-95. doi: https://doi.org/10.1007/s11914-017-0384-x

Lampiasi N, Russo R, Zito F. The Alternative Faces of Macrophage Generate Osteoclasts. Biomed Res Int. 2016;2016:9089610. doi: https://doi.org/10.1155/2016/9089610

Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18. doi: https://doi.org/10.1016/j.jcms.2012.01.002

Fernandes TJ, Hodge JM, Singh PP, Eeles DG, Collier FM, Holten I, et al. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One. 2013;8(9):e73266. doi: https://doi.org/10.1371/journal.pone.0073266

Horwood NJ. Macrophage Polarization and Bone Formation: A review. Clin Rev Allergy Immunol. 2016;51(1):79-86. doi: https://doi.org/10.1007/s12016-015-8519-2

Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol. 2021;12:708186. doi: https://doi.org/10.3389/fimmu.2021.708186

Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, et al. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol. 2015;185(3):765-75. doi: https://doi.org/10.1016/j.ajpath.2014.11.008

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-69. doi: https://doi.org/10.1038/nri2448. Erratum in: Nat Rev Immunol.2010;10(6):460.

Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30(6):1090-102. doi: https://doi.org/10.1002/jbmr.2422

Anwar Z, McLeod NM, Van den Bosch P, Cairns M. A review of the use of patient reported outcome measures (PROMS) in temporomandibular joint (TMJ) surgery. J Craniomaxillofac Surg. 2024;52(2):181-7. doi: https://doi.org/10.1016/j.jcms.2023.11.005

Ashley JW, Shi Z, Zhao H, Li X, Kesterson RA, Feng X. Genetic ablation of CD68 results in mice with increased bone and dysfunctional osteoclasts. PLoS One. 2011;6(10):e25838. doi: https://doi.org/10.1371/journal.pone.0025838

Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA, Fish JL. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone. 2019;127:488-98. doi: https://doi.org/10.1016/j.bone.2019.07.017

Konermann A, Götz W, Le M, Dirk C, Lossdörfer S, Heinemann F. Histopathological Verification of Osteoimmunological Mediators in Peri-Implantitis and Correlation to Bone Loss and Implant Functional Period. J Oral Implantol. 2016;42(1):61-8. doi: https://doi.org/10.1563/aaid-joi-D-13-00355

Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, et al. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012;347(3):567-73. doi: https://doi.org/10.1007/s00441-011-1205-7

Kalyan S. It May Seem Inflammatory, but Some T Cells Are Innately Healing to the Bone. J Bone Miner Res. 2016;31(11):1997-2000. doi: https://doi.org/10.1002/jbmr.2875

Xia Z, Triffitt JT. A review on macrophage responses to biomaterials. Biomed Mater. 2006;1(1):R1-9. doi: https://doi.org/10.1088/1748-6041/1/1/R01

Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517-32. doi: https://doi.org/10.1002/jbmr.354

Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017;111:1-26. doi: https://doi.org/10.1016/j.mser.2016.11.001

Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv Mater. 2017;29(9). doi: https://doi.org/10.1002/adma.201604634

Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232-44. doi: https://doi.org/10.4049/jimmunol.181.2.1232

Cho SW, Soki FN, Koh AJ, Eber MR, Entezami P, Park SI, et al. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci U S A. 2014;111(4):1545-50. doi: https://doi.org/10.1073/pnas.1315153111

Additional Files

Published

2025-12-15

How to Cite

1.
Kosinov OS, Mishchenko OM. Evaluation of the NanoGraft biomaterial immunogenicity in maxillary sinus augmentation. Zaporozhye Medical Journal [Internet]. 2025Dec.15 [cited 2025Dec.23];27(6):487-94. Available from: https://zmj.zsmu.edu.ua/article/view/335692