Positive and negative effects of monosodium glutamate on morphofunctional characteristics of the pancreas (an analytical literature review)

Authors

DOI:

https://doi.org/10.14739/2310-1210.2026.1.336662

Keywords:

monosodium glutamate, pancreas, rats, food additive, metabolism

Abstract

Monosodium glutamate (MSG) is widely used as a flavor enhancer in the food industry; however, its effects on the pancreas remain insufficiently studied. Experimental animal studies and clinical observations regarding the potential toxicity of this substance have yielded varying results depending on the organ systems involved and the administered dose.

Aim: to highlight the specific effects of monosodium glutamate on the pancreas of rats of different ages, based on the analysis of relevant scientific literature.

Materials and methods. This review summarizes and analyzes scientific studies published between 2015 and 2025, selected through systematic searches in established scientific databases, including PubMed, Google Scholar, Scopus, Web of Science. The following keywords and their combinations were used: monosodium glutamate, pancreas, white rats, food additive, metabolism.

Results. The analyzed literature confirms the significant clinical and research relevance of this topic, given the extensive use of MSG in the food industry. Experimental studies consistently demonstrate the dose-dependent negative effects of MSG administration on the pancreas in animals of various age groups. However, clinical findings regarding the effects of dietary MSG exposure in humans remain inconsistent and inconclusive.

Conclusions. Based on the available literature, there is a distinct need for comprehensive investigations into the systemic effects of MSG, particularly focusing on the pancreas. The presence of glutamate receptors and transporters in the pancreas suggests that this organ is a direct target for MSG action.

Author Biographies

M. Yu. Kochmar, Uzhhorod National University

MD. PhD, Associate Professor, Head of the Department of Human Anatomy and Histology

Yu. V. Lytvak, Uzhhorod National University

MD, PhD, Associate Professor of the Department of Human Anatomy and Histology

T. V. Harapko, Uzhhorod National University

MD, PhD, DSc, Professor of the Department of Human Anatomy and Histology

O. I. Hetsko, Uzhhorod National University

MD, PhD, Associate Professor of the Department of Human Anatomy and Histology

M. B. Zavadska, Uzhhorod National University

MD, Assistant, Department of Human Anatomy and Histology

References

Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, et al. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf. 2019;18(4):1111-34. doi: https://doi.org/10.1111/1541-4337.12448

Bayram HM, Akgoz HF, Kizildemir O, Ozturkcan A. Monosodium glutamate: review on preclinical and clinical reports. Biointerface Res Appl Chem. 2023;13(2):149. doi: https://doi.org/10.33263/BRIAC132.149

Peng Q, Huo D, Ma C, Jiang S, Wang L, Zhang J. Monosodium glutamate induces limited modulation in gut microbiota. J Funct Foods. 2018;49:493-500. doi: https://doi.org/10.1016/j.jff.2018.09.015

Bayram HM, Öztürkcan A. [Effects of food additives on microbiota]. Gida. 2020;45(5):1030-46. doi: https://doi.org/10.15237/gida.GD20070

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, et al. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J. 2017;15(7):e04910. doi: https://doi.org/10.2903/j.efsa.2017.4910

Udom GJ, Abdulyekeen BR, Osakwe MO, Ezejiofor AN, Orish CN, Orish FC, Frazzoli C, Orisakwe OE. Reconsideration of the health effects of monosodium glutamate: from bench to bedside evidence. J Environ Sci Health C Toxicol Carcinog. 2025;43(1):51-81. doi: https://doi.org/10.1080/26896583.2024.2415202

Kahe K, Laferrère B, Castellanos FX, Zhang Y, Mozaffarian D. Monosodium glutamate: A hidden risk factor for obesity? Obes Rev. 2025;26(6):e13903. doi: https://doi.org/10.1111/obr.13903

Walker R, Lupien JR. The safety evaluation of monosodium glutamate. J Nutr. 2000;130(4S Suppl):1049S-52S. doi: https://doi.org/10.1093/jn/130.4.1049S

Moldovan OL, Vari CE, Tero-Vescan A, Cotoi OS, Cocuz IG, Tabaran FA, et al. Potential Defence Mechanisms Triggered by Monosodium Glutamate Sub-Chronic Consumption in Two-Year-Old Wistar Rats. Nutrients. 2023;15(20):4436. doi: https://doi.org/10.3390/nu15204436

Mohan M, George N, Shobha P. Histological and immunohistochemical effects of chronic intraperitoneal monosodium glutamate at doses equivalent to human consumption in cerebellar cortex of the adult mice. Natl J Physiol Pharm Pharmacol. 2024;14(2):324-8. doi: https://doi.org/10.5455/njppp.2023.13.07340202323072023

Leembruggen AJ, Lu Y, Wang H, Uzungil V, Renoir T, Hannan AJ, et al. Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon. Biomolecules. 2023;13(1):139. doi: https://doi.org/10.3390/biom13010139

Hakimi M, Mohamadi MA, Ghaderi Z. The effects of glutamine supplementation on performance and hormonal responses in non-athlete male students during eight week resistance training. J Hum Sport Exerc. 2012;7(4):770-82. doi: https://doi.org/10.4100/jhse.2012.74.05

Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res. 2003;140(1-2):1-47. doi: https://doi.org/10.1016/s0166-4328(02)00272-3

Geha RS, Beiser A, Ren C, Patterson R, Greenberger PA, Grammer LC, et al. Multicenter, double-blind, placebo-controlled, multiple-challenge evaluation of reported reactions to monosodium glutamate. J Allergy Clin Immunol. 2000;106(5):973-80. doi: https://doi.org/10.1067/mai.2000.110794

Anderson GH, Fabek H, Akilen R, Chatterjee D, Kubant R. Acute effects of monosodium glutamate addition to whey protein on appetite, food intake, blood glucose, insulin and gut hormones in healthy young men. Appetite. 2018;120:92-9. doi: https://doi.org/10.1016/j.appet.2017.08.020

Gottardo FM, Silva APA da, Santos LR dos, Colla LM, Reinehr CO. Use of monosodium glutamate in foods: the good, the bad, and the controversial side. ABCS Health Sci. 2022;47:e022305. doi: https://doi.org/10.7322/abcshs.2020155.1609

Bai L, Zhang X, Ghishan FK. Characterization of vesicular glutamate transporter in pancreatic alpha - and beta -cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol. 2003;284(5):G808-14. doi: https://doi.org/10.1152/ajpgi.00333.2002

Rachdi L, Maugein A, Pechberty S, Armanet M, Hamroune J, Ravassard P, et al. Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Sci Rep. 2020;10(1):13469. doi: https://doi.org/10.1038/s41598-020-69758-6

Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, et al. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med. 2015;21(4):363-72. doi: https://doi.org/10.1038/nm.3822

Xue Y, Shen Q, Li C, Dai Z, He T. The Visceral Adipose Index in Relation to Incidence of Hypertension in Chinese Adults: China Health and Nutrition Survey (CHNS). Nutrients. 2020;12(3):805. doi: https://doi.org/10.3390/nu12030805

Rooman I, Lutz C, Pinho AV, Huggel K, Reding T, Lahoutte T, et al. Amino acid transporters expression in acinar cells is changed during acute pancreatitis. Pancreatology. 2013;13(5):475-85. doi: https://doi.org/10.1016/j.pan.2013.06.006

Wang W, Pan H, Ren F, Chen H, Ren P. Targeting ASCT2-mediated glutamine metabolism inhibits proliferation and promotes apoptosis of pancreatic cancer cells. Biosci Rep. 2022;42(3):BSR20212171. doi: https://doi.org/10.1042/BSR20212171

Ahangari H, Bahramian B, Khezerlou A, Tavassoli M, Kiani-Salmi N, Tarhriz V, et al. Association between monosodium glutamate consumption with changes in gut microbiota and related metabolic dysbiosis-A systematic review. Food Sci Nutr. 2024;12(8):5285-95. doi: https://doi.org/10.1002/fsn3.4198. Erratum in: Food Sci Nutr. 2024;12(12):10972. doi: https://doi.org/10.1002/fsn3.4584

Kumari D, Kumar R, Sharma AK, Thakur K, Mahajan D, Kumari H, et al. Physiological effects of monosodium glutamate – a food additive on human health: a review. J Exp Zool India. 2023;26(2):2461-6. doi: https://doi.org/10.51470/jez.2023.26.2.2461

Vorhees CV. A Test of Dietary Monosodium Glutamate Developmental Neurotoxicity in Rats: A Reappraisal. Ann Nutr Metab. 2018;73 Suppl 5:36-42. doi: https://doi.org/10.1159/000494781

Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, et al. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim. 2006;55(2):109-15. doi: https://doi.org/10.1538/expanim.55.109

Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun. 2008;30(1-2):42-50. doi: https://doi.org/10.1016/j.jaut.2007.11.016

Konopelniuk VV, Prybytko IY, Tsyriuk OI, Falalieieva TM. [Pathophysiology characteristics of the experimental model of obesity in female rats induced neonatal administration of monosodium glutamate]. ScienceRise: Biological Science. 2016;(3):14-8. Ukrainian. doi: https://doi.org/10.15587/2519-8025.2016.83570

Paltov YV. Ivasivca KP, Pankiv MV. [Myths and reality about the effects of glutamate. Compilation of scientific data of modern world literature]. Morphologia. 2021;15(1):7-21. Ukrainian. doi: https://doi.org/10.26641/1997-9665.2021.1.7-21

Rudyk M, Pozur V, Opeida I, Voieikova D, Khranovska N, Fedorchuk O, et al. [Modulatory effects of sodium glutamate on functions of rat’s circulating phagocytic cells in vivo and in vitro]. Reports of the National Academy of Sciences of Ukraine. 2024;(5):89-97. Ukrainian. doi: https://doi.org/10.15407/dopovidi2017.05.089

Zhang X, Cui Y, Fang L, Li F. Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas. 2008;37(3):e31-8. doi: https://doi.org/10.1097/MPA.0b013e3181744b50

Sasaki Y, Shimada T, Iizuka S, Suzuki W, Makihara H, Teraoka R, et al. Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome. Eur J Pharmacol. 2011;662(1-3):1-8. doi: https://doi.org/10.1016/j.ejphar.2011.04.051

Litvak YV, Harapko T, Lytvak V, Foros AI. Morphological peculiarities of the pancreas of male rats after prolonged administration of monosodium glutamate during the recovery period. Wiad Lek. 2022;75(12):3102-8. doi: https://doi.org/10.36740/WLek202212135

Lytvak YV, Harapko TV, Lytvak VV, Kucheriavchenko MO. [Morphological and morphometric indicators of structural components of the exocrine part of the pancreas after withdrawal of administration of monosodium glutamate to rats]. Pathologia. 2024;21(2):148-55. Ukrainian. doi: https://doi.org/10.14739/2310-1237.2024.2.301279

Oladipo IC, Adebayo EA, Kuye OM, Olanbiwoninu AA. Effects of chronic consumption of monosodium glutamate in Sprague Dawley rats' liver. Int J Biochem Res Rev. 2016;12(4):1-6. doi: https://doi.org/10.9734/IJBCRR/2016/26324

Okwudiri OO, Sylvanus AC, Peace IA. Monosodium glutamate induces oxidative stress and affects glucose metabolism in the kidney of rats. Int J Biochem Res Rev. 2012;2(1):15817. doi: https://doi.org/10.9734/IJBCRR/2012/827

Ogbuagu EO, Airaodion AI, Okoroukwu VN, Ogbuagu U. Hyperglycemic and hypocholesterolemic effect of monosodium glutamate in Wistar rats. Int J Hematol. 2019;2(2):115-21. Available from: https://journalijr2h.com/index.php/IJR2H/article/view/40/79

Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C, et al. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats. PLoS One. 2015;10(6):e0131595. doi: https://doi.org/10.1371/journal.pone.0131595

Mustafina HM, Starchenko II, Fylenko BМ, Koka VМ, Cherniak VV, Roiko NV, Proskurnya SA. Morphological features of the liver parenchyma in the experimental supplementation of ration with the food additives. Wiad Lek. 2022;75(6):1525-8. doi: https://doi.org/10.36740/WLek202206117

Additional Files

Published

2026-02-11

How to Cite

1.
Kochmar MY, Lytvak YV, Harapko TV, Hetsko OI, Zavadska MB. Positive and negative effects of monosodium glutamate on morphofunctional characteristics of the pancreas (an analytical literature review). Zaporozhye Medical Journal [Internet]. 2026Feb.11 [cited 2026Feb.13];28(1):65-70. Available from: https://zmj.zsmu.edu.ua/article/view/336662