Actual problems of exposure risk assessment of finely dispersed aerosols and aerosols of nanoparticles
DOI:
https://doi.org/10.14739/2310-1210.2018.02.125526Keywords:
nanoparticles, finely dispersed particles, working zone air, occupational riskAbstract
Purpose of the study – analysis of the scientific literature on generalization of the data on domestic and foreign experience in risk assessment due to exposure to finely dispersed aerosols and aerosols of nanoparticles (NPs).
The article summarizes data of long-term studies on the effect of nanomaterials and nanoparticles on the quality of human habitat and health. The domestic and foreign experience of harm health assessment, safety of new types of nanomaterials for the environment and work-related conditions have been analyzed.
There are numerous studies of foreign and domestic scientists on the biological activity of nanoparticles and their effect on experimental animals, namely, on the specificity of their effect on various organs and systems of the body.
Classification of nanomaterials, depending on their chemical composition, is presented. Attention is paid to the problems of nanosafety, namely, to the evaluation of nanotoxicity of substances and to the definition of the concept of a “dose” for nanoparticles. The data on the presence of finely dispersed and ultra-fine particles in the atmospheric air, which increase risk of respiratory system diseases among residents of large megacities, is given. There is special importance on assessing work conditions and occupational risks in production and use of materials which contain nanoparticles as well as in production processes with formation of the fine dust and nanoparticles indicated in the article.
Due to the lack of a clear system for assessing health risks related to the action of nanoparticles, lack of common criteria of harmfulness and maximum allowable concentrations for most nanoparticles and uniform methods of their control, it is suggested to strictly adhere to protective measures in contact with nanomaterials and active improvement of nanosecurity measures.
Conclusions. High toxicity and health hazards of finely dispersed and ultra-fine particles confirm need to control their content in the air of the populated areas and in the air of the working zone of industrial enterprises, where suspended particles are formed in the technological process. Obtained results of the scientific studies should be used for substantiation of preventive measures on nanosecurity in development and implementation of the nanotechnology, in order to protect health of workers and the general population.
References
Magidov, S. Kh. (2009). Razvitie sovremennykh nanotekhnolohij i profilakticheskaya medicina [Development of modern nanotechnologies and preventive medicine]. Zdorove i obrazovanie v XXI veke. Proceedings of the 10th International Congress (P. 207–211). Moscow. [in Russian].
Potapov, A. I., Rakitskiy, V. N., Tulakin, A. V., Lutsenko, L. A., Il'nitskaya, A. V., Egorova, A. M., & Gvozdeva, L .L. (2013). Bezopasnost' nanochastic i nanomaterialov dlya okruzhayushchej i proizvodstvenoj sredy [Safety of nanoparticles and nanomaterials for environmental and occupational space]. Gigiena i sanitariya, 3, 8–14. [in Russian].
Bogoslovskaya, O. A., Sizova, E. A., Polyakova, V. S., Miroshnikova, S. A., Leipunsky, I. O., Olkhovskaya, I. P., & Glushchenko, N. N. (2009). Izuchenie bezopasnosti vvedeniya nanochastic medi s razlichnymi fiziko-khimicheskimi kharakteristikami v organizme zhivotnykh [Studying of safety of copper nanoparticles introduction with different physical- chemical characteristics into animals' organism]. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2(108), 124–127. [in Russian].
Demetska, O. V., Kozytska, T. V., Andrusishina, I. M., Movchan, V. O., Tkachenko, T. Yu., & Grodzyuk, G. Ya. (2014) Otsinka potentsiinoho ryzyku pry khimichnomu syntezi nanochastynok sulfidu kadmiiu [Assessment of potential risk in chemical synthesis of cadmium sulphide nanoparticles]. Ukrainskyi zhurnal z problem medytsyny pratsi, 4(41), 51–56 [in Ukrainian].
Anciferova, I. V. (2012). Istochniki postupleniya nanochastic v okruzhayushchuyu sredu [Sources of nanoparticles inflow to the environment]. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 14(2), 54–64 [in Russian].
Nemenko, B. A., Il'iasova, A. D., & Syzdykov, D. M. (2014). Metody opredeleniya vzveshenykh ae'rozolej v atmosfernom vozdukhe [Methods of definition of the weighed aerosols in atmospheric air]. Vestnik KazNMU, 2(2), 488–490. [in Russian].
Onishchenko, G. G., Tutelyan, V. A., Gmoshinsky, I. V., & Khotimchenko, S. A. (2013). Razvitie sistemy ocenki bezopasnosti i kontrolya nanomaterialov i nanotekhnologij v Rossijskoj Federacii [Development of the system for nanomaterials and nanotechnology safety in Russian Federation]. Gigiena i sanitariya, 1, 4–11 [in Russian].
Yavorovsky, O. P., Solokha, N. V., Veremiy, M. I., Karlova, O. O., Bobyr, V. V., & Chobotar, A. P. (2016). Hihienichna otsinka vurobnychykh chynnykiv yak osnova upravlinnia ryzykamy u roboti operatoriv z oderzhannia nanoporoshkiv nitrydu tytanu, dysylytsydu khromu i dioksydu tsyrkoniiu [Hygienic assessment of the production factors as a basis for risk management in the operators’ work for the manufacture of titanium nitride, chromium disilicide, and zirconium dioxide nanopowders]. Dovkillia ta zdorovia, 8, 63–68 [in Ukrainian].
Sharma, M., Nikota, J., Halappanavar, S., Castranova, V., Rothen-Rutishauser, B., & Clippinger, A. J. (2016). Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Arch Toxicol., 90(7), 1605–1627. doi: 10.1007/s00204-016-1742-7.
Li, N., Xia, T., & Nel, A. E. (2008). The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med., 44(9), 1689−1699. doi: 10.1016/j.freeradbiomed.2008.01.028.
Mercer, R. R., Scabilloni, J. F., Hubbs, A. F., Battelli, L. A., McKinney, W., & Friend, S. (2013). Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol., 10, 10−33. doi: 10.1186/1743-8977-10-33.
Akimova, E. I. (2010). Gigienicheskie voprosy bezopasnosti razvitiya nanotekhnologij [Hygienic problems concerning the security of nanotechnologies development]. Zdorov'e naseleniya i sreda obitaniya, 2, 45–47. [in Russian].
Stone, V., Miller, M. R., Clift, M. J. D., Elder, A., Mills N. L., Moller, P., et al. (2017). Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ Health Perspect, 125(10), 125−135. doi: 10.1289/EHP424.
Zibarev, E. V., Tchashin, M. V., Nikonova, S. M., Kousrayeva, Z. S., Kouzmin, A. V., Ellingsen, D. G., & Thomassen, Y. (2010). Ocenka biomarkerov e'kspozicii k svarochnomu ae'rozolyu [Evaluating biomarkers of exposure to electric welding aerosol]. Medicina truda i promyshlennaya e'kologiya, 4, 14–17 [in Russian].
Shutt, R. H., Kauri, L. M., Weichenthal, S., Kumarathasan, P., Vincent, R., Thomson, E. M., et al. (2017). Exposure to air pollution near a steel plant is associated with reduced heart rate variability: a randomised crossover study. Environ Health, 1, 16−20. doi: 10.1186/s12940-016-0206-0.
Hajrullin, R. Z., & Samarin, E. N. (2014). Osobennosti obespecheniia bezopasnykh uslovii truda rabotnikov predpriiatii nanoindustrii [Features of providing safe working conditions for workers of nanoindustry enterprises]. Vestnik Kazanskogo tekhnologicheskogo universiteta, 17(15), 331–333 [in Russian].
Zaitseva, N. V., Zemlyanova, M. A., Zvezdin, V. N., & Sayenko, Ye. V. (2013). Toksikologo-gigienicheskaya ocenka bezopasnosti vodnoj suspenzii nanodispersnogo dioksida kremniya, sintezirovanogo metodom zhidkokristallicheskogo templantirovaniya [Toxicological and hygienic safety assessment of the aqueous suspension of nano-dispersed silicon dioxide, synthesized using liquid-crystal templating]. Analiz riska zdorov'yu, 1, 65–72 [in Russian].
Wang, C., Cheng, K., Zhou, L., He, J., Zheng, X., Zhang, L. et al. (2017). Evaluation of Long-Term Toxicity of Oral Zinc Oxide Nanoparticles and Zinc Sulfate in Mice. Biol Trace Elem Res., 178(2), 276–282. doi: 10.1007/s12011-017-0934-1.
Hong, F., Zhou, Y., Zhou, Y., & Wang, L. (2017). Immunotoxic effects of thymus in mice following exposure to nanoparticulate TiO2. Environ Toxicol., 32(10), 2234–2243. doi: 10.1002/tox.22439.
Simonova, I. N., Antonyuk, M. V., & Vitkina, T. I. (2013). Vliyanie nanochastic vozdushnoj sredy na sostoyanie bronkholegochnoj sistemy [The influence of nanoparticles from the air on the state of bronchopulmonary system]. Biulleten' fiziologii i patologii dykhaniya, 49, 115–120. [in Russian].
Trokhimchuk, K. A. (2013). O vliyanii GRES na zagryaznennost' melkodispersnoj pul'yu gorodskikh territorij [Effect of state district power plant on pollution by fine particles of urban areas]. Al'ternativnaya e'nergetika i e'kologia, 12(134), 73–76 [in Russian].
Ufimceva, L. V., Antipova, N. S., & Kol'cova, E. E. (2015). Raspredelenie nanochastic pyli v vozdukhe selitebnoj territorii Khabarovska pod vliyaniem atmosfernykh osadkov [The dust nanoparticle distribution in the air of Khabarovsk residential territory under the atmospheric precipitation influence]. Vestnik KrasGAU, 5, 50–53. [in Russian].
Sevalnev, A. I., & Sharavara, L. P. (2016). Hihiienichna otsinka vmistu dribnodyspersnoho pylu u povitri robochoi zony pratsivnykiv metalurhiinoho pidpryiemstva povnoho tsyklu [Hygienic assessment of the content of fine dust in the air of the working zone of workers of a full-cycle metallurgical enterprise]. Suchasni medychni tekhnolohii, 3(31), 112−115. [in Ukrainian].
Ulanova, T. S., Gileva, O. V., & Volkova, M. V. (2015). Opredelenie chastic mikro- i nanodiapazona v vozdukhe rabochej zony na predpriyatiyakh gornodobyvayushchej promyshlennosti [Determination of micro and nanoparticles in the workplace area at the enterprises of mining industry]. Analiz riska zdorov'yu, 4, 44–49. [in Russian].
May, I. V., Kokoulina, A. A., Zagorodnov, S. Y., & Popova, E. V. (2014). Ocenka e'kspozicii naseleniya k melkodispersnoj pyli v zonakh vliyaniya promyshlennykh stacionarnykh istochnikov [Exposure assessment for population to fine particles in the influence zones of emissions from industrial stationary emission sources]. Analiz riska zdorov'yu, 1, 21–30. [in Russian].
Onishchenko, G. G. (2011). Organizaciya nadzora za oborotom nanomaterialov, predstavlyayushchikh potencial'nuyu opasnost' dlya zdorov'ya cheloveka [Organizing the supervision over the turnover of nanomaterials presenting a potential hazard to human health]. Gigiena i sanitariya, 2, 4–9. [in Russian].
Ulanova, T. S., Antipyeva, M. V., Zabirova, M. I., & Volkova, M. V. (2015). Opredelenie chastic nanodiapazona v vozdukhe rabochej zony metallurgicheskogo proizvodstva [Determination of nanoscale particles in the air of working zone at the metallurgical production]. Analiz riska zdorov'yu, 1, 77–81. [in Russian].
Yavorovsky, O. P., Veremey, M. I., Demetska, O. V., & Zinchenko, T. O. (2013). Do pytannia hihiienichnoho kontroliu u povitri robochoi zony aerozoliv z nanorozmirnoiu dyspersnoiu fazoiu [On the issue of the hygienic control aerosols with nanoscale dispersed phase in the working area]. Dovkillia ta zdorovia, 1, 56–59. [in Ukrainian].
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)