Structural changes in the wall of the abdominal aorta in modeling of long-term cannabinoid receptors CB1 blockade in laboratory animals

Authors

  • S. V. Havreliuk National University of Physical Education and Sport of Ukraine, Kyiv,

DOI:

https://doi.org/10.14739/2310-1210.2019.3.169186

Keywords:

abdominal aorta, cannabinoid receptors

Abstract

The purpose of the work is to detect the effect of long-term cannabinoid receptors CB1 blockade on the abdominal aorta wall structure in experimental rats.

Materials and methods. The study was performed on two groups of 100-day-old male Wistar rats. The first group was made up of intact animals. The second group consisted of animals that were administrated with rimonabant hydrochloride solution (10 mg/kg-1 of body weight) per os with drinking water per day. The experiment duration was 10 days, and then the abdominal aorta of each animal was isolated for the histological measurements. Computer morphometry, the study of the subendothelial layer thickness with the internal elastic lamina and media, the ratio of the lumen diameter to the vessel wall were conducted in the abdominal aorta wall structure assessment.

Results. It has been established that long-term cannabinoid CB1 receptors blockade in 100-day-old male Wistar rats resulted in morphological changes in all layers of the abdominal aorta wall that manifested in alterations of endothelial cells structure and their desquamation in the intima. The inner elastic lamina became thin and discontinuous. The thickness of the media was not uniform and there was a decrease in the number of elastic laminae as well as an increase in the number of chaotically oriented smooth muscle cells. Changes in adventitia manifested in swelling and loosely packed fibers with their increased dispersion. The number of collapsed vasa vasorum was decreased to single and hypertrophy of the nerve ganglia was observed. There was a thinning of the internal lamina and a decreased percentage of the lumen and vessel components of the wall at the expense of other tissues.

Conclusions. The study results indicate that the long-term cannabinoid CB1 receptors blockade is a factor that damages endothelium of the abdominal aorta and leads to a decrease in elastin and proliferation of smooth muscle cells in the media, as well as a decrease in the percentage of the lumen and wall of the abdominal aorta at the expense of other tissues.

 

References

Costantino, S., Paneni, F., Cosentino, F. (2016) Ageing, metabolism and cardiovascular disease. J Physiol. 594(8), 2061–2073. doi: 10.1113/JP270538

Oleĭnikov, V. É., Matrosova, I. B., Gusakovskaia, L. I., & Sergatskaia, N. V. (2014) Rol' opredeleniya aortal'nogo davleniya i rigidnosti aorty u pacientov s serdechno-sosudistymi zabolevaniyami [Role of the determination of aortic pressure and rigidity aortic in patients with cardiovascular diseases]. Terapevticheskij arkhiv, 86(4), 91–95. [in Russian].

Mikael, L. R., Paiva, A. M. G., Gomes, M. M., Sousa, A. L. L., Jardim, P. C. B. V., Vitorino, P. V. O., et al. (2017) Vascular Aging and Arterial Stiffness. Arq Bras Cardiol., 109(3), 253–258. doi: 10.5935/abc.20170091

Scioli, M. G., Bielli, A., Arcuri, G., Ferlosio, A., & Orlandi, A. (2014) Ageing and microvasculature. Vasc Cell., 6, 19. doi: 10.1186/2045-824X-6-19

Toczek, M., Baranowska-Kuczko, M., Grzęda, E., Pędzińska-Betiuk, A., Weresa, J., & Malinowska, B. (2016) Age-specific influences of chronic administration of the fatty acid amide hydrolase inhibitor URB597 on cardiovascular parameters and organ hypertrophy in DOCA-salt hypertensive rats. Pharmacol Rep., 68(2), 363–369. doi: 10.1016/j.pharep.2015.10.004

Karpińska, O., Baranowska-Kuczko, M., Kloza, M., & Kozłowska, H. (2018) Endocannabinoids modulate Gq/11 protein-coupled receptor agonist-induced vasoconstriction via a negative feedback mechanism. J Pharm Pharmacol., 70(2), 214–222. doi: 10.1111/jphp.12854

Lipina, C., & Hundal, H. S. (2017) The endocannabinoid system: 'NO' longer anonymous in the control of nitrergic signalling? J Mol Cell Biol., 9(2), 91–103. doi: 10.1093/jmcb/mjx008

Szekeres, M., Nadasy, G. L., Turu, G., Soltesz-Katona, E., Toth, Z. E., Balla, A., et al. (2012) Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. J Biol Chem., 287(37), 31540–31550. doi: 10.1074 / jbc.M112.346296

Schaich, C. L., Shaltout, H. A., Brosnihan, K. B., Howlett, A. C., & Diz, D. I. (2014) Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressureregulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep., 2(8), e12108. doi: 10.14814/phy2.12108

O'Leary, D. H., Reuwer, A. Q., Nissen, S. E., Després, J. P., Deanfield, J. E., Brown, M. W., et al. (2011) Effect of rimonabant on carotid intima-media thickness (CIMT) progression in patients with abdominal obesity and metabolic syndrome: the AUDITOR Trial. Heart., 97(14), 1143–1150. doi: 10.1136 / hrt.2011.223446

Gavreliuk, S. V. (2017) Vliyanie blokady SV1 receptorov kannabinoidov na parametry gemodinamiki i funkciyu e'ndoteliya pri immobilizacionnom stresse v e'ksperimente [Effect of cannabinoids CB1 receptors blockade on hemodynamic parameters and endothelial function at the immobilization stress in the experiment]. Zaporozhye medical journal, 6, 743–47. doi: 10.14739/2310-1210.2017.6.114704 [in Russian].

Gavreliuk, S. V. (2017) Izmenenie ul'trazvukovykh kharakteristik gemodinamicheskikh parametrov i funkcii e'ndoteliya bryushnoj aorty v e'ksperimente s dlitel'noj blokadoj SV1 receptorov kannabinoidov [Changes the ultrasonic characteristics of hemodynamic parameters and abdominal aorta endothelial function in experiment with a long-term blockade of CB1 cannabinoid receptors]. Visnyk problem biolohii i medytsyny, 1(135), 113–17. [in Russian].

Gavreliuk, S. V., & Chykina, I. V. (2017) Vplyv khronichnoho immobilizatsiinoho stresu na rozvytok dysfunktsii endoteliiu v eksperymenti [Effect of chronic immobilization stress on the development of endothelial dysfunction in rats]. Fiziolohichnyi zhurnal, 63(2), 56–64. [in Ukrainian].

Malkov, P. G., & Frank, G. A. (Eds.) (2011). Osnovy obespecheniya kachestva v gistologicheskoj laboratornoj tekhnike: Rukovodstvo [Fundamentals of quality assurance in histological laboratory equipment: Management]. Mosсow. [in Russian].

Avtandilov, G. G. (1990). Medicinskaya Morfometriya. Rukovodstvo [Medical Morphometry. Management] (384). Mosсow: Medicina. [in Russian].

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015) Heart disease and stroke statistics–2015 update: a report from the American heart association. Circulation, 131, 434–441. doi: 10.1161/CIR.0000000000000157

van Varik, B. J., Rennenberg, R. J., Reutelingsperger, C. P., Kroon, A. A., de Leeuw, P. W., & Schurgers, L. J. (2012) Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet., 3, 290. doi: 10.3389/ fgene.2012.00290

Stenmark, K. R., Yeager, M. E., El Kasmi, K. C., Nozik-Grayck, E., Gerasimovskaya, E. V., Li, M., et al. (2013) The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol., 75, 23–47. doi: 10.1146/annurev-physiol-030212-183802

Hu, Y., & Xu, Q. (2011) Adventitial Biology. Differentiation and Function. Arteriosclerosis, Thrombosis, and Vascular Biology., 31, 1523–1529. doi: 10.1161/ATVBAHA.110.221176

How to Cite

1.
Havreliuk SV. Structural changes in the wall of the abdominal aorta in modeling of long-term cannabinoid receptors CB1 blockade in laboratory animals. Zaporozhye Medical Journal [Internet]. 2019May31 [cited 2024Dec.25];(3). Available from: http://zmj.zsmu.edu.ua/article/view/169186

Issue

Section

Original research