DOI: https://doi.org/10.14739/2310-1210.2019.4.173342

Анализ полиморфизма гена COL1A1_1 (rs1107946) как фактор риска рождения детей с низкой массой тела

T. Yе. Shumna, T. O. Levchuk, O. M. Kamyshnyi

Аннотация


Цель работы – определение генотипов полиморфизма С/А гена коллагена COL1A1_1 (rs1107946) и закономерность распределения аллельных генов у детей с малой массой тела при рождении.

Материалы и методы. Обследовали 168 детей. Пациентов поделили на 3 группы в зависимости от веса при рождении: І группа – 52 детей с весом при рождении 1500–1999 г, ІІ группа – 76 детей с весом при рождении 2000–2499 г, ІІІ группа – 40 детей с весом при рождении2500 г и более (с нормальной массой тела). Генотипирование проводили методом полимеразной цепной реакции.

Результаты. Частота определения аллеля С составила 39,6 %, аллеля А – 60,42 %, Chi-square (df = 1) 29,17, p < 0,05. При этом гомозиготный генотип АА устанавливали достоверно чаще – 52,98 % против 32,14 % случав генотипа СС. Гетерозиготный генотип СА определяли только у 14,9 % детей, достоверно реже, чем гомозиготные генотипы СС (df = 1) 13,92, p < 0,05, АА (df = 1) 54,38, p < 0,05. Генотип АА полиморфизма гена коллагена COL1A1_1 (rs1107946) отмечен среди детей І та ІІ группы в 61,53 % и 52,63 %, СС – 23,08 % и 31,58 %, СА – 15,38 % и 15,79 % случав соответственно. Почти у половины детей ІІІ группы (47,5 %) установлен генотип полиморфизма СС, генотип АА – у 35,0 %, генотип СА – только у 17,5 % обследованных.

Выводы. Молекулярно-генетическое определение полиморфизма С/А гена коллагена COL1A1_1 (rs1107946) показало, что частота определения аллеля А была среди обследованных детей достоверно выше, чем аллеля С. Соответственно, гомозиготный генотип АА устанавливали достоверно чаще, чем генотип СС. Результаты исследования свидетельствуют о прогностическом значении аллельного гена А в развитии риска рождения детей с малой массой тела, то есть более низкий вес тела (1500–1999 г) имели дети с гомозиготным генотипом АА.

 


Ключевые слова


аллельные гены; генотипы; коллаген; низкий вес; дети

Полный текст:

PDF (English)

Литература


Luyckx, V. A., & Brenner, B. M. (2015). Birth weight, malnutrition and kidney-associated outcomes - a global concern. Nature Reviews Nephrology, 11(3), 135–149, doi: 10.1038/nrneph.2014.251

Euser, A. M., de Wit, C. C., Finken, M. J., Rijken, M., & Wit, J. M. (2008). Growth of preterm born children. Horm Res, 70(6), 319-28. doi: 10.1159/000161862

Anderson, K. R., Schoch, J. J., Lohse, C. M., Hand, J. L., Davis, D. M., & Tollefson, M. M. (2016). Increasing incidence of infantile hemangiomas (IH) over the past 35 years: Correlation with decreasing gestational age at birth and birth weight. Journal of the American Academy of Dermatology. 74(1), 120–126. doi: 10.1016/j.jaad.2015.08.024

Morrison, K. M., Ramsingh, L., Gunn, E., Streiner, D., Van Lieshout, R., Boyle, M., et al. (2016). Cardiometabolic Health in Adults Born Premature With Extremely Low Birth Weight. Pediatrics, 138(4).

Khalsa, D. D., Beydoun, H. A., & Carmody, J. B. (2016). Prevalence of chronic kidney disease risk factors among low birth weight adolescents. Pediatric Nephrology, 31(9), 1509–1516. doi: 10.1007/s00467-016-3384-7

Synnes, A., Luu, T. M., Moddemann, D., Church, P., Lee, D., Vincer, M., et al. (2017). Determinants of developmental outcomes in a very preterm Canadian cohort. Archives of Disease in Childhood - Fetal and Neonatal Edition, 102(3), F235–F234. doi: 10.1136/archdischild-2016-311228

Zavadenko, N. N., & Davydova, L. A. (2018) Nedonoshennost' i nizkaya massa tela pri rozhdenii kak factory riska narushenij nervno-psikhicheskogo razvitiya u detej [Prematurity and low birth weight as risk factors for neurodevelopmental disorders in children]. Rossijskij vestnik perinatologii i pediatrii, 63(4), 43–51. doi: 10.21508/1027–4065–2018–63–4–43–51

Linsell, L., Malouf, R., Johnson, S., Morris, J., Kurinczuk, J. J., & Marlow, N. (2016). Prognostic Factors for Behavioral Problems and Psychiatric Disorders in Children Born Very Preterm or Very Low Birth Weight: A Systematic Review. J Dev Behav Pediatr, 37(1), 88–102. doi: 10.1097/DBP.0000000000000238

Sucksdorff, M., Lehtonen, L., Chudal, R., Suominen, A., Joelsson, P., Gissler, M., & Sourander, A. (2015). Preterm Birth and Poor Fetal Growth as Risk Factors of Attention-Deficit/Hyperactivity Disorder. Pediatrics, 136(3), e599-608. doi: 10.1542/peds.2015-1043

Kelishadi, R., Haghdoost, A. A., Jamshidi, F., Aliramezany, M., & Moosazadeh, M. (2015). Low birthweight or rapid catch-up growth: which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatrics and International Child Health, 35(2), 110–23. doi: 10.1179/2046905514Y.0000000136

Jornayvaz, F. R., Vollenweider, P., Bochud, M., Mooser, V., Waeber, G., & Marques-Vidal, P. (2016). Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovascular Diabetology, 15, 73. doi: 10.1186/s12933-016-0389-2

Demelash, H., Motbainor, A., Nigatu, D., Gashaw, K., & Melese, A. (2015). Risk factors for low birth weight in Bale zone hospitals, South-East Ethiopia: a case–control study. BMC Pregnancy and Childbirth, 15, 264. doi: 10.1186/s12884-015-0677-y

Kiseleva, L. G., Chumakova, G. N., Soloviev, A. G., Kharkova, O. A., Gryzunova, E. M., & Makarova, A. A. (2017). Zaderzhka razvitiya ploda pri tabakokurenii materej [Fetal growth restriction in smoking mothers]. Neonatologiya: novosti, mneniya, obuchenie, 3(17), 89–96. [in Russian].

Synnes, A., Luu, T. M., Moddemann, D., Church, P., Lee, D., Vincer, M., et al. (2017). Determinants of developmental outcomes in a very preterm Canadian cohort. ADC Fetal & Neonatal Edition, 102(3), F235-F234. doi: 10.1136/archdischild-2016-311228

Connolly, N., Anixt, J., Manning, P., Ping-I Lin, D., Marsolo, K. A., & Bowers, K. (2016) Maternal metabolic risk factors for autism spectrum disorder—An analysis of electronic medical records and linked birth data. Autism research, 9(8), 829–837. doi: 10.1002/aur.1586

Zhang, G., Bacelis, J., Lengyel, C., Teramo, K., Hallman, M., Helgeland, Ø., et al. (2015). Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis. PLOS Medicine, 12(8), e1001865. doi: 10.1371/journal.pmed.1001865

Gesteiro, E., Sánchez-Muniz, F. J., Ortega-Azorín, C., Guillén, M., Corella, D., & Bastida, S. (2017). Maternal and neonatal FTO rs9939609 polymorphism affect insulin sensitivity markers and lipoprotein profile at birth in appropriate-for-gestational-age term neonates. Journal of Physiology and Biochemistry., 72(2), 169–181. doi: 10.1007/s13105-016-0467-7

Wu, H., Zhu, P., Geng, X., Liu, Z., Cui, L., Gao, Z., et al. (2017). Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet, 295(5), 1105–1118, doi: 10.1007/s00404-017-4322-z

Chen, S., Zhu, R., Zhu, H., Yang, H., Gong, F., Wang, L., et al. (2017). The prevalence and risk factors of preterm small-for-gestational-age infants: a population-based retrospective cohort study in rural Chinese population. BMC Pregnancy and Childbirth, 17(1), 237. doi: 10.1186/s12884-017-1412-7

Finken, M. J., Schrevel, M., Houwing-Duistermaat, J. J., Kharagjitsingh, A. V., Dekker, F. W., Koeleman, B. P., et al. (2016). Vitamin D receptor polymorphisms and growth until adulthood after very premature birth. Journal of Bone and Mineral Metabolism, 34(5), 564–570. doi: 10.1007/s00774-015-0697-8

Thomas, S., Arbuckle, T. E., Fisher, M., Fraser, W. D., Ettinger, A.,& King, W. (2015). Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study. Environmental Research, 140, 430–439. doi: 10.1016/j.envres.2015.04.018

Pearce, B. D., Nguyen, P. H., Gonzalez-Casanova, I., Qian, Y., Omer, S. B, Martorell, R., & Ramakrishnan, U. (2016). Pre-pregnancy maternal plasma cytokine levels and risks of small-for-gestational-age at birth. The Journal of Maternal-Fetal & Neonatal Medicine, 29(24), 4065–4069. doi: 10.3109/14767058.2016.1156669

Seiko, Sasaki, Mariko, Limpar, Fumihiro, Sata, Sumitaka, Kobayashi, & Reiko, Kishi. (2017). Interaction between maternal caffeine intake during pregnancy and CYP1A2C164A polymorphism affects infant birth size in the Hokkaido study. Pediatric Research, 82, 19–28. https://www.nature.com/articles/pr201770

Alegina, E. V., Tetruashvil, N. K., Agadzhanova, A. A., Trofimov, D. Yu., & Donnikov, A. E. (2016). Role of Collagen Gene Polymorphisms in the Structure of Early Gestation Loss. Bulletin of Experimental Biology and Medicine, 160(3), 360–363. doi: 10.1007/s10517-016-3171-2

Arseni, L., Lombardi, A., & Orioli, D. (2018). From Structure to Phenotype Impact of Collagen Alterations on Human Health. International Journal of Molecular Sciences, 19(5). doi: 10.3390/ijms19051407

Ensembl Project Retrieved from http://www.ensembl.org/ http://www.ensembl.org/Homo_sapiens/Variation/Citations?db=core;r=17:50203129-50204129;v=rs1107946;vdb=variation;vf=362559692.


Ссылки

  • На текущий момент ссылки отсутствуют.


Запорожский медицинский журнал   Лицензия Creative Commons
Запорожский государственный медицинский университет