Role of intestinal microbiota changes in cardiovascular diseases pathogenesis


  • V. H. Lyzohub Bogomolets National Medical University, Kyiv, Ukraine,
  • V. N. Kramarova Bogomolets National Medical University, Kyiv, Ukraine,
  • I. O. Melnychuk Bogomolets National Medical University, Kyiv, Ukraine,



intestinal microbiota, cardiovascular diseases, endotoxin, short-chain fatty acids, trimethylamine, trimethylamine-N-oxide



Purpose of this article is to clarify the role of intestinal microbiota changes in cardiovascular diseases pathogenesis. In the analysis of intestinal microbiota changes in patients with cardiac pathology, a diversity and lack of research on this issue are notable. Intestinal microflora performs immune, metabolic, synthetic, enzymatic, antitoxic and other functions, providing intestinal colonization resistance. The intestinal microbiota effects on the human body are primarily due to toxic metabolites which can be provisionally divided into five groups: trimethylamine and its derivatives, short-chain fatty acids, endotoxin and bacterial wall products, bile acids and uremic toxins. It is interesting to further study their role in the pathogenesis of heart diseases. For example, bacterial role in trimethylamine, choline metabolism and their effects on the pathogenesis of atherosclerosis. The possibilities of their use as diagnostic markers are studied. However, studies of trimethylamines are usually associated with difficulties, due to their strong dependence on the patient's diet. Trimethylamines are the most studied group of intestinal metabolites, although there are still no reliable ways to correct them. Analysis of short-chain fatty acids requires the identification of each fatty acid individual role, and comparing their content in peripheral blood and stool. Endotoxin is a marker of microbial activity in the intestine. It is an important component of the bacterial cell wall. A study of bile acids metabolism changes influenced by intestinal microbiota also can help to understand disorders of lipid metabolism. An increase in the intestinal microflora uremic toxins (p-cresol, indoxyl sulfate) synthesis is associated with chronic kidney disease. It is promising to develop further ways for correction of the intestinal microbiota composition, which requires a better understanding of cardio-vascular pathology pathogenetic mechanisms.

Conclusions. The study of intestinal microbiota composition is appropriate taking into account synthetic activity of various bacteria. Reviewing the effect of microbial metabolites on the human body and studying the mechanisms of their synthesis, it is possible to understand their role as diagnostic markers and suggest ways of correction.


Akopyan, A. N. (2014) Diagnostika i lechenie funkcional'nyлh narushenij motoriki organov pishhevareniнa u detej (Avtoref. dis… dokt. med. nauk) [Diagnosis and treatment of functional disorders of motility of the digestive system in children Dr. med. sci. diss.] [in Russian].

Gyulazyan, N. M., Belaya, O. F., Malov, V. A., Pak, S. G., & Volchkova, E. V. (2014) Lipopolisakharidy/e'ndotoksiny gramotricatel'nykh bakterij: rol' v razvitii intoksikacii [Lipopolysaccharides / endotoxins of gram-negative bacteria: their role in developing intoxicati]. E'pidemiologiya i infekcionnye bolezni, 2, 11–16. [in Russian].

Ivashkin, V. T., & Ivashkin, K. V. (2017) Mikrobiom cheloveka v prilozhenii k klinicheskoj praktike [Human microbiome, applied to clinical practice]. Rossijskij zhurnal gastroe'nterologii gepatologii, koloproktologii, 27(6), 4–13. [in Russian].

Molozhavaya, O. S., Ivahnjuk, T. V., Makarenko, A. N., & Broz, R. V. (2016) Funkcii kishechnoj mikroflory organizma v norme i pri patologii [Physiological functions of intestinal microflora in normal and pathological variants]. Aktualni problemy suchasnoi medytsyny. Visnyk ukrainskoi medychnoi stomatolohichnoi akademii, 16, 4(56), part 1, 333–340. [in Russian].

Rojtberg, G. E., & Strutynskij, A. V. (2014) Vnutrennie bolezni. Sistema organov pishhevareniya. [Internal Diseases. The system of digestive organs]. Moscow: MEDpress-inform. [in Russian].

Chaplin, A. V., Rebrikov, D. V., & Boldyreva, M. N. (2017) Mikrobiom cheloveka [The human microbiome]. Vestnik Rossijskogo gosudarstvennogo medicinskogo universiteta, 2, 5–13. [in Russian].

Yankovskij, D. S., & Dyment, G. S. (2008) Mikroflora i zdorov'e cheloveka [Microflora and human health]. Kyiv: Chervona Ruta-Tours. [in Russian].

Belkaid, Y., & Harrison, O. J. (2017) Homeostatic immunity and the microbiota. Immunity, 46(4), 562–576. doi: 10.1016/j.immuni.2017.04.008 [in Russian].

Chu, H., Duan, Y., Yang, L., & Schnabl, B. (2018). Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut, 68(2), 359–370. doi: 10.1136/gutjnl-2018-316307

Felisbino, M. B., & McKinsey, T. A. (2018) Epigenetics in Cardiac Fibrosis Emphasis on Inflammation and Fibroblast Activation. JACC Basic Transl Sci, 3(5), 704–715. doi: 10.1016/j.jacbts.2018.05.003

Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon,G., Hyde, E. R., McCue, T., et al. (2013) The microbiota modulates gut physiology and behavioral abnormalities associated with autism. Cell, 155(7), 1451–1463. doi: 10.1016/j.cell.2013.11.024

Han, H., Zhu, J., Zhu, Z., Ni, J., Du, R., Dai, Y., et al. (2015) P-Cresyl Sulfate Aggravates Cardiac Dysfunction Associated With Chronic Kidney Disease by Enhancing Apoptosis of Cardiomyocytes. J Am Heart Assoc, 4(6), e001852. doi: 10.1161/JAHA.115.001852

Han, H., Chen, Y., Zhu, J., Ni, J., Sun, J., & Zhang, R. (2016) Atorvastatin attenuates p-cresyl sulfate-induced atherogenesis and plaque instability in ApoE knockout mice. Mol Med Rep, 14(4), 3122–3128. doi: 10.3892/mmr.2016.5626

Kaji, I., Iwanaga, T., Watanabe, M., Guth, P. H., Engel, E., Kaunitz, J. D., & Akiba, Y. (2015) SCFA transport in rat duodenum. Am J Physiol Gastrointest Liver Physiol, 308(3), G188–G197. doi: 10.1152/ajpgi.00298.2014

Wang, K., Yu, X., Li, Y., Guo, Y., Ge, L., Pu, F., et al. (2018) Bifidobacterium bifidum TMC3115 Can Characteristically Influence Glucose and Lipid Profile and Intestinal Microbiota in the Middle-Aged and Elderly. Probiotics Antimicrob Proteins. doi: 10.1007/s12602-018-9441-8

Kim, H., Kim, D. H., Seo, K. H., Chon, J. W., Nah, S. Y., Bartley, G. E., et al. (2015) Modulation of the intestinal microbiota is associated with lower plasma cholesterol and weight gain in hamsters fed chardonnay grape seed flour. J Agric Food Chem, 63(5), 1460–7. doi: 10.1021/jf5026373

Kindt, A., Liebisch, G., Clavel, T., Haller, D., Hörmannsperger, G., Yoon, H., et al. (2018) The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat Commun, 9(1), 3760. doi: 10.1038/s41467-018-05767-4

Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., et al. (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med, 19(5), 576–85. doi: 10.1038/nm.3145

Landfald, B., Valeur, J., Berstad, A., & Raa, J. (2017). Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microbial Ecology in Health and Disease, 28(1), 1327309. doi: 10.1080/16512235.2017.1327309

LeBlanc, J. G., Chain, F., Martín, R., Bermúdez-Humarán, L. G., Courau, S., & Langella, P. (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact, 16(1), 79. doi: 10.1186/s12934-017-0691-z

Li, Y., Liu, X., Du, A., Zhu, X., & Yu, B. (2018) miR-203 accelerates apoptosis and inflammation induced by LPS via targeting NFIL3 in cardiomyocytes. J Cell Biochem., 120(4), 6605–6613. doi: 10.1002/jcb.27955

Mafra, D., Lobo, J. C., Barros, A. F., Koppe, L., Vaziri, N. D., & Fouque, D. (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol, 9(3), 399–410. doi: 10.2217/fmb.13.165

McNabney, S. M., & Henagan, T. M. (2017) Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients, 9(12) E1348. doi: 10.3390/nu9121348

Meijers, B. K., Claes, K., Bammens, B., de Loor, H., Viaene, L., Verbeke, K., et al. (2010) p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol, 5(7), 1182–1189. doi: 10.2215/CJN.07971109

Sun, M., Wu, W., Chen, L., Yang, W., Huang, X., Ma, C., et al. (2018) Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun, 9(1), 3555. doi: 10.1038/s41467-018-05901-2

Nagatomo, Y. and Wilson Tang, W.H. (2015) Intersections between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J Card Fail, 21(12), 973–980. doi: 10.1016/j.cardfail.2015.09.017

Obeid, R., Awwad, H. M., Keller, M., & Geise, J. (2017) Trimethylamine-N-oxide and its biological variations in vegetarians. Eur J Nutr, 56(8), 2599–2609. doi: 10.1007/s00394-016-1295-9

Orman, M., Bodea, S., Funk, M. A., Campo, A. M., Bollenbach, M., Drennan, C., & Balskus, E.P. (2019) Structure-Guided Identification of a Small Molecule That Inhibits Anaerobic Choline Metabolism by Human Gut Bacteria. J Am Chem Soc, 141(1), 33–37. doi: 10.1021/jacs.8b04883

Paramsothy, S., Kamm, M. A., Kaakoush, N. O., Walsh, A. J., van den Bogaerde, J., Samuel, D., et al. (2017) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet, 389(10075), 1218–1228. doi: 10.1016/S0140-6736(17)30182-4

Pastori, D., Carnevale, R., Nocella, C., Novo, M., Santulli, M., Cammisotto, V., et al. (2017) Gut-Derived Serum Lipopolysaccharide is Associated With Enhanced Risk of Major Adverse Cardiovascular Events in Atrial Fibrillation: Effect of Adherence to Mediterranean Diet. J Am Heart Assoc, 6(6), e005784. doi: 10.1161/JAHA.117.005784

Qi, J., You, T., Li, J., Pan, T., Xiang, L., Han, Y., & Zhu, L. (2018). Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. Journal of Cellular and Molecular Medicine. 22(1), 185–194. doi: 10.1111/jcmm.13307

Rooks, M. G., & Garrett, W. S. (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol, 16(6), 341–352. doi: 10.1038/nri.2016.42

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr, 57(1), 1–24. doi: 10.1007/s00394-017-1445-8

Singh, V., Chassaing, B., Zhang, L., San Yeoh, B., Xiao, X., Kumar, M., et al. (2015) Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5-Deficient Mice. Cell Metab, 22(6), 983–96. doi: 10.1016/j.cmet.2015.09.028

Skye, S. M., Zhu, W., Romano, K. A., Guo, C. J., Wang, Z., Jia, X., et al. (2018) Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circ Res, 123(10), 1164–1176. doi: 10.1161/CIRCRESAHA.118.313142

Tang, W. H., Kitai, T., & Hazen, S. L. (2017) Gut Microbiota in Cardiovascular Health and Disease. Circ Res, 120(7), 1183–1196. doi: 10.1161/CIRCRESAHA.117.309715

Verdi, S., Jackson, M. A., Beaumont, M., Bowyer R. C. E., Bell, J. T., Spector, T. D. & Steves, C. J. (2018) Steves An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Front Aging Neurosci, 10, 398. doi: 10.3389/fnagi.2018.00398

Wang, C. H., Cheng, M. L., Liu, M. H., Shiao, M. S., Hsu, K. H., Huang, Y. Y., et al. (2016) Increased p-cresyl sulfate level is independently associated with poor outcomes in patients with heart failure. Heart Vessels, 31(7), 1100–8. doi: 10.1007/s00380-015-0702-0

Wang, S., Huang, M., You, X., Zhao, J., Chen, L., Wang, L., et al. (2018) Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci Rep, 8, 13037. doi: 10.1038/s41598-018-31353-1

Wang, Y., Yin, J., Wang, C., Hu, H., Li, X., Xue, M., et al. (2019) Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat. J Cell Mol Med, 23(1), 112–125. doi: 10.1111/jcmm.13890

Zhu, W., Wang, Z., Tang, W. H. W., & Hazen, S. L. (2017) Gut Microbe-Generated TMAO from Dietary Choline Is Prothrombotic in Subjects. Circulation., 135(17), 1671–1673. doi: 10.1161/CIRCULATIONAHA.116.025338

Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., et al. (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165(1), 111–124. doi: 10.1016/j.cell.2016.02.011

Li, X. S., Wang, Z., Cajka, T., Buffa, J. A., Nemet, I., Hurd, A. G., et al. (2018) Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight, 3(6), e99096. doi: 10.1172/jci.insight.99096

Yamagami, F., Tajiri, K., Doki, K., Hattori, M., Honda, J., Aita, S., et al. (2018) Indoxyl Sulphate is Associated with Atrial Fibrillation Recurrence after Catheter Ablation. Sci Rep, 8(1), 17276. doi: 10.1038/s41598-018-35226-5

Ye, Y., Jia, X., Bajaj, M., & Birnbaum, Y. (2018) Dapagliflozin Attenuates Na+/H+ Exchanger-1 in Cardiofibroblasts via AMPK Activation. Cardiovasc Drugs Ther, 32(6), 553–558. doi: 10.1007/s10557-018-6837-3

Yu, L., Meng, G., Huang, B., Zhou, X., Stavrakis, S., Wang, M., et al. (2018) A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int J Cardiol, 255, 92–98. doi: 10.1016/j.ijcard.2017.11.071

Zhu, Q., Gao, R., Zhang, Y., Pan, D., Zhu, Y., Zhang, X., et al. (2018) Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics, 50(10), 893–903. doi: 10.1152/physiolgenomics.00070.2018

How to Cite

Lyzohub VH, Kramarova VN, Melnychuk IO. Role of intestinal microbiota changes in cardiovascular diseases pathogenesis. Zaporozhye Medical Journal [Internet]. 2019Oct.1 [cited 2024Jun.18];(5). Available from: