Producing metabolic complexes of probiotic microorganisms with significant antimicrobial properties

Authors

DOI:

https://doi.org/10.14739/2310-1210.2021.1.224923

Keywords:

metabolites, antibacterial activity, saccharomycetales lactobacillaceae, multiresistant strains

Abstract

The aim of the work – to produce metabolic complexes with significant antibacterial properties using a new proprietary method and to substantiate the prospects of their use for designing of antimicrobial polyfunctional drugs.

Materials and methods. Metabolic complexes of Lactobacillus rhamnosus GG, Lactobacillus plantarum, Saccharomyces boulardii, Enterococcus faecium were obtained by culturing the producers in ultrasonic disintegrates of other probiotic microorganisms. Sensitivity of antibiotic-resistant strains of Escherichia coli PR and Staphylococcus haemolyticus PR was determined by qualitative method. The suspension of test-cultures (optical density of 1.0 units on the McFarland scale) after incubation with metabolites (2, 24 and 48 hours at 37 °C) was inoculated into Mueller–Hinton agar. The absence of growth was indicative of the metabolic complexes antibacterial activity against the microorganism.

Results. Cultivation of S. boulardii in the S. boulardii / L. rhamnosus / L. plantarum / E. faecium disintegrates, L. plantarum – in the L. rhamnosus / E. faecium disintegrates and L. rhamnosus – in the L. plantarum disintegrates was accompanied by an increase in the biomass of isolated microorganisms (P ≤ 0.03) and production of metabolites. Along with a similar increase in S. boulardii cells in the S. boulardii / L. rhamnosus / L. plantarum / E. faecium disintegrates, the metabolic products of lactobacterial and enterococcal disintegrates exhibited more active inhibitory effects against E. coli PR and S. haemolyticus PR. The increased antibacterial activity indicates the advantage of the new method. Another improvement is the extended spectrum of metabolic complexes owing to producer cultivation in the other probiotic disintegrates to obtain original biologically active substances with high antibacterial properties against pathogens. Among the strength of the method is that all the stages are unified into a single process avoiding multiphase procedure for the separate preparation of one probiotic microorganism disintegrate and the metabolic products of another.

Conclusions. Disintegrates as a nutrient medium can be used not only for their own producers, but also for other strains/species and various probiotic microorganisms (fungi and bacteria). The increase in antibacterial activity of metabolic complexes has been found using the new method of production. The prospects of antimicrobial polyfunctional drugs designing on this basis have been proved.

References

Bengtsson, T., Lönn, J., Khalaf, H., & Palm, E. (2018). The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria-induced proinflammatory responses in dermal fibroblasts. MicrobiologyOpen, 7(6), Article e00606. https://doi.org/10.1002/mbo3.606

Geitani, R., Ayoub Moubareck, C., Touqui, L., & Karam Sarkis, D. (2019). Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiology, 19(1), Article 54. https://doi.org/10.1186/s12866-019-1416-8

Sharma, A., & Srivastava, S. (2014). Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biology, 118(2), 264-275. https://doi.org/10.1016/j.funbio.2013.12.006

Isayenko, O. Y., Knysh, O. V., Babych, Y. M., Ryzhkova, T. N., & Dyukareva, G. I. (2019). Effect of disintegrates and metabolites of Lactobacillus rhamnosus and Saccharomyces boulardii on biofilms of antibiotic resistant conditionally pathogenic and pathogenic bacteria. Regulatory Mechanisms in Biosystems, 10(1), 3-8. https://doi.org/10.15421/021901

Hanchi, H., Hammami, R., Gingras, H., Kourda, R., Bergeron, M. G., Ben Hamida, J., Ouellette, M., & Fliss, I. (2017). Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiology, 12(3), 205-212. https://doi.org/10.2217/fmb-2016-0113

Isaienko, O. Yu., Knysh, O. V., Babych, Ye. M., Kivva, F. V., Horbach, T. V., & Balak, O. K. (2018). Sposib oderzhannia metabolitiv probiotychnykh shtamiv bakterii [The method of obtaining metabolites of probiotic strains of bacteria]. Ukraine Patent UA 123122. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=244153

Isaienko, O. Yu., Knysh, O. V., Babych, Ye. M., Zachepylo, S. V., Polianska, V. P., Vashchenko, V. L., Kovalenko, O. I., & Balak, O. K. (2018). Sposib oderzhannia kombinatsii metabolitiv probiotychnykh shtamiv hrybiv i bakterii [Method of obtaining a combination of metabolites of probiotic strains of fungi and bacteria]. Ukraine Patent UA 126603. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=248660

Gao, S., Hemar, Y., Ashokkumar, M., Paturel, S., & Lewis, G. D. (2014). Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Research, 60, 93-104. https://doi.org/10.1016/j.watres.2014.04.038

Wordon, B. A., Mortimer, B., & McMaster, L. D. (2012). Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20kHz) and heat for the application of hurdle technology. Food Research International, 47(2), 134-139. https://doi.org/10.1016/j.foodres.2011.04.038

Isaenko, О. Yu., Knysh, O. V., Babych, E. M., Kivva, F. V., Balak, O. K., & Naboychenko, O. A. (2017). Vplyv produktiv metabolizmu Lactobacillus rhamnosus GG na test-kultury stafilokokiv ta korynebakterii [The influence of metabolic products of Lactobacillus rhamnosus GG on the test-culture of staphylococcus and corynebacterium]. Visnyk problem biolohii i medytsyny, (2), 246-251. [in Ukrainian].

Sharma, M., & Shukla, G. (2020). Administration of Metabiotics Extracted From Probiotic Lactobacillus rhamnosus MD 14 Inhibit Experimental Colorectal Carcinogenesis by Targeting Wnt/β-Catenin Pathway. Frontiers in Oncology, 10, Article 746. https://doi.org/10.3389/fonc.2020.00746

Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), Article fuaa039. https://doi.org/10.1093/femsre/fuaa039

Isayenko, O. Y. (2019). Protydyfteriini vlastyvosti strukturno-metabolitnykh kompleksiv probiotychnykh shtamiv laktobakterii i sakharomitsetiv u testakh in vitro ta in vivo [Anti-diphtheria properties of structural-metabolites complexes of Lactobacteria and Saccharomyces probiotic strains]. Fiziolohichnyi zhurnal, 65(6), 51-61. https://doi.org/10.15407/fz65.06.051 [in Ukrainian].

Isayenko, O. Y., Knysh, O. V., Kotsar, O. V., Ryzhkova, T. N., & Dyukareva, G. I. (2019). Evaluation of anti-microbial activityof filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii against antibiotic-resistant gram-negative bacteria. Regulatory Mechanisms in Biosystems, 10(2), 245-250. https://doi.org/10.15421/021937

Published

2021-04-07

How to Cite

1.
Isaienko OY, Kotsar OV, Ryzhkova TM, Diukareva HI. Producing metabolic complexes of probiotic microorganisms with significant antimicrobial properties . Zaporozhye Medical Journal [Internet]. 2021Apr.7 [cited 2024Jun.18];23(1):120-5. Available from: http://zmj.zsmu.edu.ua/article/view/224923

Issue

Section

Original research