Hypoglycemia in patients with COVID-19: risk factors and prevention of complications

Authors

DOI:

https://doi.org/10.14739/2310-1210.2023.1.261797

Keywords:

COVID-19, hypoglycemia, treatment, vaccination

Abstract

The aim of the work is to analyze the available scientific information and generalize the main results of modern research on the causes and risk factors of hypoglycemia in patients with COVID-19.

Materials and methods. A search and analysis of full-text articles was carried out in the PubMed, Web of Science, Google Scholar, and Scopus databases. The search was conducted using the key terms: COVID-19 and hypoglycemia, hypoglycemia in COVID-19 patients and treatment of COVID-19 and hypoglycemia from the beginning of the pandemic in December 2019 to July 1, 2022.

Results. The analysis of literary sources made it possible to identify three groups of factors that lead to the occurrence of hypoglycemia in patients with COVID-19: peculiarities of the diabetes course in patients with COVID-19 and the influence of concomitant diseases, side effects of certain groups of drugs and methods of therapy and prevention; shortcomings in the organization of treatment and patient care. Hypoglycemia has been shown to be a risk factor for cardiovascular and total mortality in patients with diabetes, may trigger the development of a cytokine storm during COVID-19 disease, and negatively impact mortality and length of hospital stay in COVID-19.

Conclusions. To prevent hypoglycemic states in patients, one should avoid sudden changes in the type and dose of hypoglycemic drugs, periodically monitor the HbA1c level, expand the reach of patients with virtual consultations and telemedicine programs. In the case of determining the program of treatment and vaccination against COVID-19 in patients with diabetes mellitus, the known and possible hypoglycemic effects of drugs and vaccines should be taken into account.

Author Biographies

O. A. Halushko, Shupyk National Healthcare University of Ukraine, Kyiv

MD, PhD, DSc, Professor of the Department of Family Medicine and Outpatient Care

O. V. Protsiuk, Shupyk National Healthcare University of Ukraine, Kyiv

MD, PhD, DSc, Associate Professor, Head of the Department of Family Medicine and Outpatient Care

O. I. Pohorila, MD, PhD, DSc, Associate Professor, Head of the Department of Family Medicine and Outpatient Care

MD, PhD, Associate Professor of the Department of Family Medicine and Outpatient Care

References

Minfin. (n.d.). Koronavirus v Ukraini [Coronavirus in Ukraine]. Retrieved July 19, 2022, from https://index.minfin.com.ua/ua/reference/coronavirus/ukraine/

Alhakak, A., Butt, J. H., Gerds, T. A., Fosbøl, E. L., Mogensen, U. M., Krøll, J., Pallisgaard, J. L., Gislason, G. H., Torp-Pedersen, C., Køber, L., & Weeke, P. E. (2022). Glycated haemoglobin levels among 3295 hospitalized COVID-19 patients, with and without diabetes, and risk of severe infection, admission to an intensive care unit and all-cause mortality. Diabetes, obesity & metabolism, 24(3), 499-510. https://doi.org/10.1111/dom.14604

Pathan, F., Selim, S., Fariduddin, M., Rahman, M. H., Ashrafuzzaman, S. M., Afsana, F., Qureshi, N. K., Hossain, T., Saifuddin, M., Kamrul-Hasan, A. B., Mir, A. S., & BES Diabetes and COVID Task Force (2021). Bangladesh Endocrine Society (BES) Position Statement for Management of Diabetes and Other Endocrine Diseases in Patients with COVID-19. Diabetes, metabolic syndrome and obesity : targets and therapy, 14, 2217-2228. https://doi.org/10.2147/DMSO.S293688

Workgroup on Hypoglycemia, American Diabetes Association (2005). Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabetes care, 28(5), 1245-1249. https://doi.org/10.2337/diacare.28.5.1245

American Diabetes Association Professional Practice Committee, Draznin, B., Aroda, V. R., Bakris, G., Benson, G., Brown, F. M., Freeman, R., Green, J., Huang, E., Isaacs, D., Kahan, S., Leon, J., Lyons, S. K., Peters, A. L., Prahalad, P., Reusch, J. E. B., & Young-Hyman, D. (2022). 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes care, 45(Suppl 1), S83-S96. https://doi.org/10.2337/dc22-S006

Shah, K., Tiwaskar, M., Chawla, P., Kale, M., Deshmane, R., & Sowani, A. (2020). Hypoglycemia at the time of Covid-19 pandemic. Diabetes & metabolic syndrome, 14(5), 1143-1146. https://doi.org/10.1016/j.dsx.2020.07.003

Philips, B. J., Meguer, J. X., Redman, J., & Baker, E. H. (2003). Factors determining the appearance of glucose in upper and lower respiratory tract secretions. Intensive care medicine, 29(12), 2204-2210. https://doi.org/10.1007/s00134-003-1961-2

Morra, M. E., Van Thanh, L., Kamel, M. G., Ghazy, A. A., Altibi, A. M. A., Dat, L. M., Thy, T. N. X., Vuong, N. L., Mostafa, M. R., Ahmed, S. I., Elabd, S. S., Fathima, S., Le Huy Vu, T., Omrani, A. S., Memish, Z. A., Hirayama, K., & Huy, N. T. (2018). Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis. Reviews in medical virology, 28(3), e1977. https://doi.org/10.1002/rmv.1977

Yang, J. K., Lin, S. S., Ji, X. J., & Guo, L. M. (2010). Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta diabetologica, 47(3), 193-199. https://doi.org/10.1007/s00592-009-0109-4

Kleine-Weber, H., Schroeder, S., Krüger, N., Prokscha, A., Naim, H. Y., Müller, M. A., Drosten, C., Pöhlmann, S., & Hoffmann, M. (2020). Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerging microbes & infections, 9(1), 155-168. https://doi.org/10.1080/22221751.2020.1713705

Drucker, D. J. (2020). Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocrine reviews, 41(3), bnaa011. https://doi.org/10.1210/endrev/bnaa011

Maddaloni, E., & Buzzetti, R. (2020). Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes/metabolism research and reviews, 36(7), e33213321. Advance online publication. https://doi.org/10.1002/dmrr.3321

Orban, J., Leverve, X., & Ichai, C. (2010). Lactate: le substrat énergétique de demain. Réanimation, 19(5), 384-392. https://doi.org/10.1016/j.reaurg.2010.05.016

Loeb, T., Ozguler, A., Baer, G., & Baer, M. (2021). The pathophysiology of "happy" hypoglycemia. International Journal of Emergency Medicine, 14(1). https://doi.org/10.1186/s12245-021-00348-7

Moen, M. F., Zhan, M., Hsu, V. D., Walker, L. D., Einhorn, L. M., Seliger, S. L., & Fink, J. C. (2009). Frequency of hypoglycemia and its significance in chronic kidney disease. Clinical journal of the American Society of Nephrology : CJASN, 4(6), 1121-1127. https://doi.org/10.2215/CJN.00800209

Corcillo, A., Cohen, S., Game, D., & Karalliedde, J. (2021). High prevalence of Afro-Caribbean ethnicity and hypoglycaemia in patients with diabetes and end stage renal disease hospitalized with COVID-19. Nephrology, 26(3), 252-254. https://doi.org/10.1111/nep.13809

Makarem, J., Naghibi, N., Beigmohammadi, M. T., Foroumandi, M., & Mehrpooya, M. (2020). A Case Report of Progressive Liver Failure Inappropriate to Decompensated Heart Failure Following Infection With COVID-19. Cureus, 12(8), e10142. https://doi.org/10.7759/cureus.10142

Guo, W., Li, M., Dong, Y., Zhou, H., Zhang, Z., Tian, C., Qin, R., Wang, H., Shen, Y., Du, K., Zhao, L., Fan, H., Luo, S., & Hu, D. (2020). Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/metabolism research and reviews, 36(7), e3319. Advance online publication. https://doi.org/10.1002/dmrr.3319

Pal, R., & Bhadada, S. K. (2020). COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes & metabolic syndrome, 14(4), 513-517. https://doi.org/10.1016/j.dsx.2020.04.049

Orioli, L., Hermans, M., Thissen, J., Maiter, D., Vandeleene, B., & Yombi, J. (2020). COVID-19 in diabetic patients: Related risks and specifics of management. Annales D'endocrinologie, 81(2-3), 101-109. https://doi.org/10.1016/j.ando.2020.05.001

Douin, D. J., Krause, M., Williams, C., Tanabe, K., Fernandez-Bustamante, A., Quaye, A. N., Ginde, A. A., & Bartels, K. (2022). Corticosteroid Administration and Impaired Glycemic Control in Mechanically Ventilated COVID-19 Patients. Seminars in cardiothoracic and vascular anesthesia, 26(1), 32-40. https://doi.org/10.1177/10892532211043313

Laugesen, K., Petersen, I., Sørensen, H. T., & Jørgensen, J. O. L. (2019). Clinical indicators of adrenal insufficiency following discontinuation of oral glucocorticoid therapy: A Danish population-based self-controlled case series analysis. PloS one, 14(2), e0212259. https://doi.org/10.1371/journal.pone.0212259

Parise, R., Deruiter, J., Ren, J., Govindarajulu, M., Ramesh, S., Nadar, R. M., Moore, T., & Dhanasekaran, M. (2022). Impact of COVID-19 therapy on hyperglycemia. Diabetes and vascular disease research, 19(3), 14791641221095091. https://doi.org/10.1177/14791641221095091

Mahmoud, A., Alghriany, A., & Abdel Shakor, A. B. (2014). The effect of chloroquine induced hypoglycemia on the levels of major blood serum proteins in diabetic mice. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 6(2), 138-148. https://doi.org/10.21608/eajbsc.2014.16041

Baretić M. (2020). Case report of chloroquine therapy and hypoglycaemia in type 1 diabetes: What should we have in mind during the COVID-19 pandemic?. Diabetes & metabolic syndrome, 14(4), 355-356. https://doi.org/10.1016/j.dsx.2020.04.014

Hage, M. P., Al-Badri, M. R., & Azar, S. T. (2014). A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Therapeutic advances in endocrinology and metabolism, 5(4), 77-85. https://doi.org/10.1177/2042018814547204

Abdulrahman, A., AlSayed, I., AlMadhi, M., AlArayed, J., Mohammed, S. J., Sharif, A. K., Alansari, K., AlAwadhi, A. I., & AlQahtani, M. (2021). The Efficacy and Safety of Hydroxychloroquine in Patients with COVID-19: A Multicenter National Retrospective Cohort. Infectious diseases and therapy, 10(1), 439-455. https://doi.org/10.1007/s40121-021-00397-8

Kaur, K., Kaushal, S., & Kaushal, I. G. (2020). Therapeutic status of hydroxychloroquine in COVID-19: A review. Journal of anaesthesiology, clinical pharmacology, 36(Suppl 1), S160-S165. https://doi.org/10.4103/joacp.JOACP_313_20

Imanova Yaghji, N., Kan, E., Akcan, S., Colak, R., & Atmaca, A. (2021). Hydroxychloroquine Sulfate Related Hypoglycemia In A Non-Diabetic COVİD-19 Patient: A Case Report and Literature Review. Postgraduate Medicine, 133(5), 548-551. https://doi.org/10.1080/00325481.2021.1889820

Shankar, P. R., Palaian, S., & Gulam, S. M. (2021). Hydroxychloroquine and Chloroquine in Prophylaxis and Treatment of COVID-19: What Is Known?. Journal of pharmacy & bioallied sciences, 13(1), 4-10. https://doi.org/10.4103/jpbs.JPBS_404_20

Mangkuliguna, G., Glenardi, Natalia, & Pramono, L. A. (2021). Efficacy and Safety of Azithromycin for the Treatment of COVID-19: A Systematic Review and Meta-analysis. Tuberculosis and respiratory diseases, 84(4), 299-316. https://doi.org/10.4046/trd.2021.0075

Abbas, H. M., Al-Jumaili, A. A., Nassir, K. F., Al-Obaidy, M. W., Al Jubouri, A. M., Dakhil, B. D., Abdulelah, M. M., & Al Khames, Q. A. (2021). Assessment of COVID-19 Treatment containing both Hydroxychloroquine and Azithromycin: A natural clinical trial. International journal of clinical practice, 75(4), e13856. https://doi.org/10.1111/ijcp.13856

Giaime, P., Guenoun, M., Pedinielli, N., Narbonne, H., Bergounioux, J. P., Solas, C., Guilhaumou, R., Sampol, J., Ollier, J., Sichez, H., Serveaux, M., Brunner, F., & Bataille, S. (2020). Hydroxychloroquine and azithromycin tolerance in haemodialysis patients during COVID-19 infection. Nephrology, dialysis, transplantation, 35(8), 1346-1353. https://doi.org/10.1093/ndt/gfaa191

Sibiya, N., Mbatha, B., Arineitwe, C., Onyekwuluje, C., Ngubane, P., & Khathi, A. (2022). Covid 19 May Limit the Use of Anti-hyperglycemic Agents. Does it Callfor the Development of New Anti-hyperglycemic Agents?. Current Diabetes Reviews, 18(3). https://doi.org/10.2174/1573399817666210806114200

Guardado-Mendoza, R., Garcia-Magaña, M., Martínez-Navarro, L., Macías-Cervantes, H., Aguilar-Guerrero, R., Suárez-Pérez, E., & Aguilar-García, A. (2022). Effect of linagliptin plus insulin in comparison to insulin alone on metabolic control and prognosis in hospitalized patients with SARS-CoV-2 infection. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-021-04511-1

Lim, S., Bae, J., Kwon, H., & Nauck, M. (2020). COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nature Reviews Endocrinology, 17(1), 11-30. https://doi.org/10.1038/s41574-020-00435-4

Di Mauro, G., Mascolo, A., Longo, M., Maiorino, M. I., Scappaticcio, L., Bellastella, G., Esposito, K., & Capuano, A. (2022). European Safety Analysis of mRNA and Viral Vector COVID-19 Vaccines on Glucose Metabolism Events. Pharmaceuticals, 15(6), 677. https://doi.org/10.3390/ph15060677

Bunders, M., & Altfeld, M. (2020). Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity, 53(3), 487-495. https://doi.org/10.1016/j.immuni.2020.08.003

Trostle, M. E., Limaye, M. A., Avtushka, V., Lighter, J. L., Penfield, C. A., & Roman, A. S. (2021). COVID-19 vaccination in pregnancy: early experience from a single institution. American journal of obstetrics & gynecology MFM, 3(6), 100464. https://doi.org/10.1016/j.ajogmf.2021.100464

Hill, M., Mantzoros, C., & Sowers, J. (2020). Commentary: COVID-19 in patients with diabetes. Metabolism, 107, 154217. https://doi.org/10.1016/j.metabol.2020.154217

Kshanti, I. A., Epriliawati, M., Mokoagow, M. I., Nasarudin, J., & Magfira, N. (2021). The Impact of COVID-19 Lockdown on Diabetes Complication and Diabetes Management in People With Diabetes in Indonesia. Journal of primary care & community health, 12, 21501327211044888. https://doi.org/10.1177/21501327211044888

Ratzki-Leewing, A., Ryan, B., Buchenberger, J., Dickens, J., Black, J., & Harris, S. (2021). COVID-19 hinterland: surveilling the self-reported impacts of the pandemic on diabetes management in the USA (cross-sectional results of the iNPHORM study). BMJ Open, 11(9), e049782. https://doi.org/10.1136/bmjopen-2021-049782

Hassanein, M., Alamoudi, R. M., Kallash, M. A., Aljohani, N. J., Alfadhli, E. M., Tony, L. E., Khogeer, G. S., Alfadhly, A. F., Khater, A. E., Ahmedani, M. Y., Buyukbese, M. A., Shaltout, I., Belkhadir, J., Hafidh, K., Chowdhury, T. A., Hussein, Z., & Elbarbary, N. S. (2021). Ramadan fasting in people with type 1 diabetes during COVID-19 pandemic: The DaR Global survey. Diabetes research and clinical practice, 172, 108626. https://doi.org/10.1016/j.diabres.2020.108626

Alguwaihes, A., Al-Sofiani, M. E., Alyusuf, E., Almutairi, A., Ibrahim, E., Albunyan, S. S., Alzahrani, S., Hasanto, R., & Jammah, A. A. (2021). COVID-19 Precautionary Measures and Type 1 Diabetes Patients in Saudi Arabia. Primary care diabetes, 15(5), 793-798. https://doi.org/10.1016/j.pcd.2021.07.005

Pal, R., Yadav, U., Grover, S., Saboo, B., Verma, A., & Bhadada, S. (2020). Knowledge, attitudes and practices towards COVID-19 among young adults with Type 1 Diabetes Mellitus amid the nationwide lockdown in India: A cross-sectional survey. Diabetes Research and Clinical Practice, 166, 108344. https://doi.org/10.1016/j.diabres.2020.108344

Verma, A., Rajput, R., Verma, S., Balania, V., & Jangra, B. (2020). Impact of lockdown in COVID 19 on glycemic control in patients with type 1 Diabetes Mellitus. Diabetes & metabolic syndrome, 14(5), 1213-1216. https://doi.org/10.1016/j.dsx.2020.07.016

Wang, Y., Rijntjes, E., Wu, Q., Lv, H., Gao, C., Shi, B., & Schomburg, L. (2020). Selenium deficiency is linearly associated with hypoglycemia in healthy adults. Redox Biology, 37, 101709. https://doi.org/10.1016/j.redox.2020.101709

Bonora, B., Boscari, F., Avogaro, A., Bruttomesso, D., & Fadini, G. (2020). Glycaemic Control Among People with Type 1 Diabetes During Lockdown for the SARS-CoV-2 Outbreak in Italy. Diabetes Therapy, 11(6), 1369-1379. https://doi.org/10.1007/s13300-020-00829-7

Caruso, I., Di Molfetta, S., Guarini, F., Giordano, F., Cignarelli, A., Natalicchio, A., Perrini, S., Leonardini, A., Giorgino, F., & Laviola, L. (2021). Reduction of hypoglycaemia, lifestyle modifications and psychological distress during lockdown following SARS-CoV-2 outbreak in type 1 diabetes. Diabetes/metabolism research and reviews, 37(6), e3404. https://doi.org/10.1002/dmrr.3404

Fernández, E., Cortazar, A., & Bellido, V. (2020). Impact of COVID-19 lockdown on glycemic control in patients with type 1 diabetes. Diabetes Research and Clinical Practice, 166, 108348. https://doi.org/10.1016/j.diabres.2020.108348

Lockhart, M., Green, D., & Smith, D. (2022). The impact of COVID-19 lockdown on glycaemic control in young adults with type 1 diabetes mellitus. Irish journal of medical science, 1-3. Advance online publication. https://doi.org/10.1007/s11845-022-03038-2

Mesa, A., Viñals, C., Pueyo, I., Roca, D., Vidal, M., Giménez, M., & Conget, I. (2020). The impact of strict COVID-19 lockdown in Spain on glycemic profiles in patients with type 1 Diabetes prone to hypoglycemia using standalone continuous glucose monitoring. Diabetes Research and Clinical Practice, 167, 108354. https://doi.org/10.1016/j.diabres.2020.108354

Mulcahy, B., Rolnik, D., Matheson, A., Liu, Y., Palmer, K., Mol, B., & Malhotra, A. (2021). Preterm Infant Outcomes Following COVID-19 Lockdowns in Melbourne, Australia. Children, 8(12), 1169. https://doi.org/10.3390/children8121169

Wu, X., Luo, S., Zheng, X., Ding, Y., Wang, S., Ling, P., Yue, T., Xu, W., Yan, J., & Weng, J. (2021). Glycemic control in children and teenagers with type 1 diabetes around lockdown for COVID-19: A continuous glucose monitoring-based observational study. Journal of diabetes investigation, 12(9), 1708-1717. https://doi.org/10.1111/jdi.13519

Eberle, C., & Stichling, S. (2021). Impact of COVID-19 lockdown on glycemic control in patients with type 1 and type 2 diabetes mellitus: a systematic review. Diabetes & metabolic syndrome, 13(1), 95. https://doi.org/10.1186/s13098-021-00705-9

Wright, R. J., & Frier, B. M. (2008). Vascular disease and diabetes: is hypoglycaemia an aggravating factor?. Diabetes/metabolism research and reviews, 24(5), 353-363. https://doi.org/10.1002/dmrr.865

Kesavadev, J., Misra, A., Saboo, B., Aravind, S., Hussain, A., Czupryniak, L., & Raz, I. (2021). Blood glucose levels should be considered as a new vital sign indicative of prognosis during hospitalization. Diabetes & metabolic syndrome, 15(1), 221-227. https://doi.org/10.1016/j.dsx.2020.12.032

Mirabella, S., Gomez-Paz, S., Lam, E., Gonzalez-Mosquera, L., Fogel, J., & Rubinstein, S. (2022). Glucose dysregulation and its association with COVID-19 mortality and hospital length of stay. Diabetes & metabolic syndrome, 16(3), 102439. https://doi.org/10.1016/j.dsx.2022.102439

Klonoff, D. C., Messler, J. C., Umpierrez, G. E., Peng, L., Booth, R., Crowe, J., Garrett, V., McFarland, R., & Pasquel, F. J. (2021). Association Between Achieving Inpatient Glycemic Control and Clinical Outcomes in Hospitalized Patients With COVID-19: A Multicenter, Retrospective Hospital-Based Analysis. Diabetes care, 44(2), 578-585. https://doi.org/10.2337/dc20-1857

Piarulli, F., & Lapolla, A. (2020). COVID 19 and low-glucose levels: Is there a link?. Diabetes Research and Clinical Practice, 166, 108283. https://doi.org/10.1016/j.diabres.2020.108283

Zhang, B. (2021). Expert Consensus on Telemedicine Management of Diabetes (2020 Edition). International Journal of Endocrinology, 2021, 6643491. https://doi.org/10.1155/2021/6643491

Lian, X., Dalan, R., Seow, C. J., Liew, H., Jong, M., Chew, D., Lim, B., Lin, A., Goh, E., Goh, C., Othman, N. B., Tan, L., & Boehm, B. O. (2021). Diabetes Care During COVID-19 Pandemic in Singapore Using a Telehealth Strategy. Hormone and metabolic research, 53(3), 191-196. https://doi.org/10.1055/a-1352-5023

Muthukrishnan, J., Venugopal, N., Basavaraj, A. P., Bagga, G., Jayakrishnan, V. Y., Bharadwaj, K., & Thoke, S. V. (2021). Management of type 1 diabetes mellitus during the COVID-19 pandemic. Medical journal, Armed Forces India, 77(Suppl 2), S393-S397. https://doi.org/10.1016/j.mjafi.2021.04.001

Tootee, A., Esfahani, E. N., & Larijani, B. (2020). Diabetes management during Ramadan amid Covid-19 pandemic. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 28(2), 795-798. https://doi.org/10.1007/s40199-020-00357-6

Gothong, C., Singh, L. G., Satyarengga, M., & Spanakis, E. K. (2022). Continuous glucose monitoring in the hospital: an update in the era of COVID-19. Current opinion in endocrinology, diabetes, and obesity, 29(1), 1-9. https://doi.org/10.1097/MED.0000000000000693

Perez-Guzman, M., Shang, T., Zhang, J., Jornsay, D., & Klonoff, D. (2021). Continuous Glucose Monitoring in the Hospital. Endocrinology and Metabolism, 36(2), 240-255. https://doi.org/10.3803/enm.2021.201

Ceriello, A., Standl, E., Catrinoiu, D., Itzhak, B., Lalic, N. M., Rahelic, D., Schnell, O., Škrha, J., Valensi, P., & “Diabetes and Cardiovascular Disease (D&CVD)” Study Group of the European Association for the Study of Diabetes (EASD) (2020). Issues for the management of people with diabetes and COVID-19 in ICU. Cardiovascular diabetology, 19(1), 114. https://doi.org/10.1186/s12933-020-01089-2

Published

2023-02-15

How to Cite

1.
Halushko OA, Protsiuk OV, Pohorila OI. Hypoglycemia in patients with COVID-19: risk factors and prevention of complications. Zaporozhye Medical Journal [Internet]. 2023Feb.15 [cited 2024Jun.18];25(1):61-7. Available from: http://zmj.zsmu.edu.ua/article/view/261797