Association between calprotectin and volatile fatty acids in patients with inflammatory bowel diseases
DOI:
https://doi.org/10.14739/2310-1210.2023.2.263222Keywords:
fecal calprotectin, volatile fatty acids, butyric acid, propionic acid, ulcerative colitis, Crohn’s diseaseAbstract
Aim. To evaluate the content of calprotectin and volatile fatty acids (VFAs) in feces of patients with inflammatory bowel disease (IBD).
Materials and methods. 61 patients (33 men and 28 women) with IBD aged 20 to 66 years (the mean indicator was 41.80 ± 1.14 years) were examined. The patients were treated in the Department of Intestinal Diseases of SI “Institute of Gastroenterology of the National Academy of Medical Sciences of Ukraine”. All the patients were divided into two groups: Group I – 46 patients with ulcerative colitis (UC) and Group II – 15 patients with Crohn’s disease (CD). The control group consisted of 10 practically healthy people (donors).
Calprotectin detection in fecal samples was carried out using a kit “Immundiagnostik”, Germany. Fecal VFAs were analyzed using a hardware-software complex for medical research with a gas chromatograph Chromatek-Crystal 5000.
Results. A significant increase in the content of fecal calprotectin was found. Its amount depended on the disease nosology and was more expressed in patients with UC (3.5 times higher (P < 0.05) than that in patients with CD). The observed changes were accompanied by an increase in the content of propionic (C3) acid and a decrease in acetic (C2), butyric (C4) acids in coprofiltrates of the examined patients. The detected imbalance in the fecal content of VFAs in patients led to an increase in the amount of fatty acids, which was more pronounced in patients with CD. An association between calprotectin levels and fecal VFA content was identified. Thus, correlation analysis allowed to establish a relationship between calprotectin levels and propionic acid content in patients with IBD (r = 0.370; P = 0.046).
Conclusions. In the case of active bowel inflammation, there is the increase in the fecal content of calprotectin and the decrease in VFAs (acetic and butyric acids) in accordance with the degree of disease activity, which allows the use of these indicators to assess the efficacy of therapies.
References
Ananthakrishnan, A. N., Kaplan, G. G., & Ng, S. C. (2020). Changing Global Epidemiology of Inflammatory Bowel Diseases: Sustaining Health Care Delivery Into the 21st Century. Clinical Gastroenterology and Hepatology, 18(6), 1252-1260. https://doi.org/10.1016/j.cgh.2020.01.028
Flynn, S., & Eisenstein, S. (2019). Inflammatory Bowel Disease Presentation and Diagnosis. The Surgical Clinics of North America, 99(6), 1051-1062. https://doi.org/10.1016/j.suc.2019.08.001
Carstens, A., Dicksved, J., Nelson, R., Lindqvist, M., Andreasson, A., Bohr, J., Tysk, C., Talley, N. J., Agréus, L., Engstrand, L., & Halfvarson, J. (2019). The Gut Microbiota in Collagenous Colitis Shares Characteristics With Inflammatory Bowel Disease-Associated Dysbiosis. Clinical and Translational Gastroenterology, 10(7), e00065. https://doi.org/10.14309/ctg.0000000000000065
Yamamoto-Furusho, J. K., Bosques-Padilla, F., de-Paula, J., Galiano, M. T., Ibañez, P., Juliao, F., Kotze, P. G., Rocha, J. L., Steinwurz, F., Veitia, G., & Zaltman, C. (2017). Diagnóstico y tratamiento de la enfermedad inflamatoria intestinal: Primer Consenso Latinoamericano de la Pan American Crohn's and Colitis Organisation. Diagnosis and treatment of inflammatory bowel disease: First Latin American Consensus of the Pan American Crohn's and Colitis Organisation. Revista de Gastroenterología de México, 82(1), 46-84. https://doi.org/10.1016/j.rgmx.2016.07.003
Seyedian, S. S., Nokhostin, F., & Malamir, M. D. (2019). A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. Journal of Medicine and Life, 12(2), 113-122. https://doi.org/10.25122/jml-2018-0075
Annese, V. (2020). Genetics and epigenetics of IBD. Pharmacological Research, 159, 104892. https://doi.org/10.1016/j.phrs.2020.104892
Chang, J. T. (2020). Pathophysiology of Inflammatory Bowel Diseases. The New England Journal of Medicine, 383(27), 2652-2664. https://doi.org/10.1056/NEJMra2002697
Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical Journal of Gastroenterology, 11(1), 1-10. https://doi.org/10.1007/s12328-017-0813-5
Ahlawat, S., Kumar, P., Mohan, H., Goyal, S., & Sharma, K. K. (2021). Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Critical Reviews in Microbiology, 47(2), 254-273. https://doi.org/10.1080/1040841X.2021.1876631
Geremia, A., Biancheri, P., Allan, P., Corazza, G. R., & Di Sabatino, A. (2014). Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews, 13(1), 3-10. https://doi.org/10.1016/j.autrev.2013.06.004
Liu, J. Z., Jellbauer, S., Poe, A. J., Ton, V., Pesciaroli, M., Kehl-Fie, T. E., Restrepo, N. A., Hosking, M. P., Edwards, R. A., Battistoni, A., Pasquali, P., Lane, T. E., Chazin, W. J., Vogl, T., Roth, J., Skaar, E. P., & Raffatellu, M. (2012). Zinc Sequestration by the Neutrophil Protein Calprotectin Enhances Salmonella Growth in the Inflamed Gut. Cell Host & Microbe, 11(3), 227-239. https://doi.org/10.1016/j.chom.2012.01.017
Xiang, B., Dong, Z., & Dai, C. (2021). The diagnostic and predictive value of fecal calprotectin and capsule endoscopy for small-bowel Crohn's disease: a systematic review and meta-analysis. Revista Española de Enfermedades Digestivas, 113(3), 193-201. https://doi.org/10.17235/reed.2020.6996/2020
Ricciuto, A., & Griffiths, A. M. (2019). Clinical value of fecal calprotectin. Critical Reviews in Clinical Laboratory Sciences, 56(5), 307-320. https://doi.org/10.1080/10408363.2019.1619159
Lee, J. (2016). Fecal Calprotectin in Inflammatory Bowel Disease. The Korean Journal of Gastroenterology, 67(5), 233-237. https://doi.org/10.4166/kjg.2016.67.5.233
Ayling, R. M., & Kok, K. (2018). Chapter Six - Fecal Calprotectin. Advances in Clinical Chemistry, 87, 161-190. https://doi.org/10.1016/bs.acc.2018.07.005
Khaki-Khatibi, F., Qujeq, D., Kashifard, M., Moein, S., Maniati, M., & Vaghari-Tabari, M. (2020). Calprotectin in inflammatory bowel disease. Clinica Chimica Acta, 510, 556-565. https://doi.org/10.1016/j.cca.2020.08.025
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461-478. https://doi.org/10.1038/s41575-019-0157-3
Zhang, Z., Zhang, H., Chen, T., Shi, L., Wang, D., & Tang, D. (2022). Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Communication and Signaling, 20, 64. https://doi.org/10.1186/s12964-022-00869-5
Sun, M., Wu, W., Liu, Z., & Cong, Y. (2017). Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology, 52(1), 1-8. https://doi.org/10.1007/s00535-016-1242-9
Parada Venegas, D., De la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H., Faber, K. N., & Hermoso, M. A. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, 277. https://doi.org/10.3389/fimmu.2019.00277
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)