Стовбурові клітини в контексті кишкового канцерогенезу (огляд літератури)

Автор(и)

DOI:

https://doi.org/10.14739/2310-1210.2023.2.272160

Ключові слова:

стовбурові клітини, ракові стовбурові клітини, рак товстої кишки, дослідження стовбурових клітин

Анотація

Мета роботи – проаналізувати останні відомості фахової літератури щодо стовбурових клітин загалом, інтестинальних стовбурових клітин зокрема, а також ракових стовбурових клітин у контексті кишкового канцерогенезу.

Протягом останнього десятиліття накопичено чимало даних, що підтверджують існування пулу ракових стовбурових клітин, їхнє значення в прогресуванні раку, резистентності до чинних схем лікування, а також у виникненні рецидивів. Ці клітини – невелика фракція ракових клітин, що ініціюють пухлинний ріст і спричиняють неоднорідність пухлинної тканини. Крім того, вони відрізняються значною резистентністю до впливу різних цитотоксичних факторів. Тому можливість виділення пулу ракових стовбурових клітин і подальшого таргетного впливу є вкрай важливою для забезпечення повної елімінації пухлини.

Вивчення інтестинальних стовбурових клітин завжди було в фокусі уваги дослідників біології стовбурових клітин, адже інтестинальні стовбурові клітини – приклад активної популяції клітин, що забезпечує регулярне швидке оновлення епітелію, який постійно зазнає впливу токсичних, бактеріальних та інших агресивних факторів. Відповідно, саме кишковий канцерогенез є зручною моделлю для вивчення ролі стовбурових клітин у туморогенезі.

Нині розрізняють дві основні схеми кишкового канцерогенезу, що визнають одночасно. Це так звані «bottom-up» та «top-down» напрями поширення трансформованих клітин. Першою обґрунтовано «bottom-up» схему, що, вочевидь, узгоджується із сучасними уявленнями щодо будови кишкових крипт. Дещо пізніше стали з’являтись повідомлення щодо можливості напряму «top-down»: диференційовані клітини, розташовані в поверхневих відділах кишкових крипт, зазнаючи мутацій, можуть дедиференціюватись і повертатись до базальних відділів; можливе також патологічне підвищення рівня проліферації поверхневих епітеліоцитів, що призводить до збільшення площі люмінальної поверхні, формування заглиблень та імітації ними кишкових крипт.

У цьому огляді наведено останні дані щодо стовбурових клітин загалом, інтестинальних стовбурових клітин зокрема, а також ракових стовбурових клітин у контексті кишкового канцерогенезу. Також проаналізовано найновіші відомості фахової літератури щодо можливостей виділення пулу ракових стовбурових клітин у карциномах товстої кишки за допомогою молекулярних маркерів, пов’язані з цим труднощі та питання, що розкрито недостатньо.

Висновки. Не викликає сумнівів існування та значення ракових стовбурових клітин у карциномах. Доволі багато молекулярних маркерів ракових стовбурових клітин уже ідентифіковано та вивчено. Зазначимо, що певні аспекти ракових стовбурових клітин не можна оцінювати лише з одного боку, оскільки вони потребують різнобічного аналізу.

Біографія автора

М. А. Шишкін, Запорізький державний медичний університет, Україна

д-р мед. наук, доцент каф. патологічної анатомії та судової медицини

Посилання

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5

Rossi, F., Noren, H., Jove, R., Beljanski, V., & Grinnemo, K. H. (2020). Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem cell research & therapy, 11(1), 489. https://doi.org/10.1186/s13287-020-02018-6

Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature medicine, 23(10), 1124-1134. https://doi.org/10.1038/nm.4409

Hatano, Y., Fukuda, S., Hisamatsu, K., Hirata, A., Hara, A., & Tomita, H. (2017). Multifaceted Interpretation of Colon Cancer Stem Cells. International journal of molecular sciences, 18(7), 1446. https://doi.org/10.3390/ijms18071446

Barbato, L., Bocchetti, M., Di Biase, A., & Regad, T. (2019). Cancer Stem Cells and Targeting Strategies. Cells, 8(8), 926. https://doi.org/10.3390/cells8080926

Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine, 3(7), 730-737. https://doi.org/10.1038/nm0797-730

Jahanafrooz, Z., Mosafer, J., Akbari, M., Hashemzaei, M., Mokhtarzadeh, A., & Baradaran, B. (2020). Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. Journal of cellular physiology, 235(5), 4153-4166. https://doi.org/10.1002/jcp.29337

Taniguchi, H., Moriya, C., Igarashi, H., Saitoh, A., Yamamoto, H., Adachi, Y., & Imai, K. (2016). Cancer stem cells in human gastrointestinal cancer. Cancer science, 107(11), 1556-1562. https://doi.org/10.1111/cas.13069

Oue, N., Sentani, K., Sakamoto, N., Uraoka, N., & Yasui, W. (2019). Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells. International journal of clinical oncology, 24(7), 771-778. https://doi.org/10.1007/s10147-019-01443-9

Heng, W. S., Gosens, R., & Kruyt, F. (2019). Lung cancer stem cells: origin, features, maintenance mechanisms and therapeutic targeting. Biochemical pharmacology, 160, 121-133. https://doi.org/10.1016/j.bcp.2018.12.010

Butti, R., Gunasekaran, V. P., Kumar, T., Banerjee, P., & Kundu, G. C. (2019). Breast cancer stem cells: Biology and therapeutic implications. The international journal of biochemistry & cell biology, 107, 38-52. https://doi.org/10.1016/j.biocel.2018.12.001

Rycaj, K., & Tang, D. G. (2015). Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer research, 75(19), 4003-4011. https://doi.org/10.1158/0008-5472.CAN-15-0798

Nimmakayala, R. K., Batra, S. K., & Ponnusamy, M. P. (2019). Unraveling the journey of cancer stem cells from origin to metastasis. Biochimica et biophysica acta. Reviews on cancer, 1871(1), 50-63. https://doi.org/10.1016/j.bbcan.2018.10.006

Gehart, H., & Clevers, H. (2019). Tales from the crypt: new insights into intestinal stem cells. Nature reviews. Gastroenterology & hepatology, 16(1), 19-34. https://doi.org/10.1038/s41575-018-0081-y

Munro, M. J., Wickremesekera, S. K., Peng, L., Tan, S. T., & Itinteang, T. (2018). Cancer stem cells in colorectal cancer: a review. Journal of clinical pathology, 71(2), 110-116. https://doi.org/10.1136/jclinpath-2017-204739

Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. The American journal of anatomy, 141(4), 537-561. https://doi.org/10.1002/aja.1001410407

Hong, Y., Liew, S. C., Thean, L. F., Tang, C. L., & Cheah, P. Y. (2018). Human colorectal cancer initiation is bidirectional, and cell growth, metabolic genes and transporter genes are early drivers of tumorigenesis. Cancer letters, 431, 213-218. https://doi.org/10.1016/j.canlet.2018.06.005

Patel, A., Tripathi, G., Gopalakrishnan, K., Williams, N., & Arasaradnam, R. P. (2015). Field cancerisation in colorectal cancer: a new frontier or pastures past?. World journal of gastroenterology, 21(13), 3763-3772. https://doi.org/10.3748/wjg.v21.i13.3763

Sphyris, N., Hodder, M. C., & Sansom, O. J. (2021). Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers, 13(5), 1000. https://doi.org/10.3390/cancers13051000

Angius, A., Scanu, A. M., Arru, C., Muroni, M. R., Rallo, V., Deiana, G., Ninniri, M. C., Carru, C., Porcu, A., Pira, G., Uva, P., Cossu-Rocca, P., & De Miglio, M. R. (2021). Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. International journal of molecular sciences, 22(4), 1603. https://doi.org/10.3390/ijms22041603

Alison, M. R. (2020). The cellular origins of cancer with particular reference to the gastrointestinal tract. International journal of experimental pathology, 101(5), 132-151. https://doi.org/10.1111/iep.12364

Leung, C., Tan, S. H., & Barker, N. (2018). Recent Advances in Lgr5+ Stem Cell Research. Trends in cell biology, 28(5), 380-391. https://doi.org/10.1016/j.tcb.2018.01.010

Drost, J., van Jaarsveld, R. H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R. M., Offerhaus, G. J., Begthel, H., Korving, J., van de Wetering, M., Schwank, G., Logtenberg, M., Cuppen, E., Snippert, H. J., Medema, J. P., Kops, G. J., & Clevers, H. (2015). Sequential cancer mutations in cultured human intestinal stem cells. Nature, 521(7550), 43-47. https://doi.org/10.1038/nature14415

Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Watanabe, T., Kanai, T., & Sato, T. (2015). Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nature medicine, 21(3), 256-262. https://doi.org/10.1038/nm.3802

Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., & Sato, T. (2017). Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 545(7653), 187-192. https://doi.org/10.1038/nature22081

Fumagalli, A., Oost, K. C., Kester, L., Morgner, J., Bornes, L., Bruens, L., Spaargaren, L., Azkanaz, M., Schelfhorst, T., Beerling, E., Heinz, M. C., Postrach, D., Seinstra, D., Sieuwerts, A. M., Martens, J., van der Elst, S., van Baalen, M., Bhowmick, D., Vrisekoop, N., Ellenbroek, S., … van Rheenen, J. (2020). Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer. Cell stem cell, 26(4), 569-578.e7. https://doi.org/10.1016/j.stem.2020.02.008

De Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., Anderson, J. E., Storm, E. E., Modrusan, Z., Koeppen, H., Dijkgraaf, G. J., Piskol, R., & de Sauvage, F. J. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676-680. https://doi.org/10.1038/nature21713

Chen, C., Zhao, S., Karnad, A., & Freeman, J. W. (2018). The biology and role of CD44 in cancer progression: therapeutic implications. Journal of hematology & oncology, 11(1), 64. https://doi.org/10.1186/s13045-018-0605-5

Holah, N. S., Aiad, H. A., Asaad, N. Y., Elkhouly, E. A., & Lasheen, A. G. (2017). Evaluation of the role of CD44 as a cancer stem cell marker in colorectal carcinoma: immunohistochemical study. Menoufia Medical Journal, 30(1), 174. https://doi.org/10.4103/mmj.mmj_151_16

Wang, L., Zuo, X., Xie, K., & Wei, D. (2018). The Role of CD44 and Cancer Stem Cells. Methods in molecular biology, 1692, 31-42. https://doi.org/10.1007/978-1-4939-7401-6_3

Barzegar Behrooz, A., Syahir, A., & Ahmad, S. (2019). CD133: beyond a cancer stem cell biomarker. Journal of drug targeting, 27(3), 257-269. https://doi.org/10.1080/1061186X.2018.1479756

Jang, J. W., Song, Y., Kim, S. H., Kim, J., & Seo, H. R. (2017). Potential mechanisms of CD133 in cancer stem cells. Life sciences, 184, 25-29. https://doi.org/10.1016/j.lfs.2017.07.008

Liou, G. Y. (2019). CD133 as a regulator of cancer metastasis through the cancer stem cells. The international journal of biochemistry & cell biology, 106, 1-7. https://doi.org/10.1016/j.biocel.2018.10.013

Prabavathy, D., & Ramadoss, N. (2019). Heterogeneity of Small Cell Lung Cancer Stem Cells. Advances in experimental medicine and biology, 1139, 41-57. https://doi.org/10.1007/978-3-030-14366-4_3

Liu, C. L., Chen, Y. J., Fan, M. H., Liao, Y. J., & Mao, T. L. (2020). Characteristics of CD133-Sustained Chemoresistant Cancer Stem-Like Cells in Human Ovarian Carcinoma. International journal of molecular sciences, 21(18), 6467. https://doi.org/10.3390/ijms21186467

Altevogt, P., Sammar, M., Hüser, L., & Kristiansen, G. (2021). Novel insights into the function of CD24: A driving force in cancer. International journal of cancer, 148(3), 546-559. https://doi.org/10.1002/ijc.33249

Li, W., Ma, H., Zhang, J., Zhu, L., Wang, C., & Yang, Y. (2017). Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Scientific reports, 7(1), 13856. https://doi.org/10.1038/s41598-017-14364-2

Tarhriz, V., Bandehpour, M., Dastmalchi, S., Ouladsahebmadarek, E., Zarredar, H., & Eyvazi, S. (2019). Overview of CD24 as a new molecular marker in ovarian cancer. Journal of cellular physiology, 234(3), 2134-2142. https://doi.org/10.1002/jcp.27581

Ishiwata, T., Matsuda, Y., Yoshimura, H., Sasaki, N., Ishiwata, S., Ishikawa, N., Takubo, K., Arai, T., & Aida, J. (2018). Pancreatic cancer stem cells: features and detection methods. Pathology oncology research : POR, 24(4), 797-805. https://doi.org/10.1007/s12253-018-0420-x

Enz, N., Vliegen, G., De Meester, I., & Jungraithmayr, W. (2019). CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacology & therapeutics, 198, 135-159. https://doi.org/10.1016/j.pharmthera.2019.02.015

Lefort, É. C., Diaconu, B., Bentley, V. L., & Blay, J. (2020). Apigenin upregulation of CD26/DPPIV on colon epithelial cells requires inhibition of casein kinase 2. Food science & nutrition, 8(10), 5321-5329. https://doi.org/10.1002/fsn3.1823

Beckenkamp, A., Davies, S., Willig, J. B., & Buffon, A. (2016). DPPIV/CD26: a tumor suppressor or a marker of malignancy?. Tumour biology, 37(6), 7059-7073. https://doi.org/10.1007/s13277-016-5005-2

Hamidi, H., Pietilä, M., & Ivaska, J. (2016). The complexity of integrins in cancer and new scopes for therapeutic targeting. British journal of cancer, 115(9), 1017-1023. https://doi.org/10.1038/bjc.2016.312

Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nature reviews. Cancer, 18(9), 533-548. https://doi.org/10.1038/s41568-018-0038-z

Brinkhof, B., Zhang, B., Cui, Z., Ye, H., & Wang, H. (2020). ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene: X, 5, 100031. https://doi.org/10.1016/j.gene.2020.100031

Han, S., Yang, W., Zong, S., Li, H., Liu, S., Li, W., Shi, Q., & Hou, F. (2017). Clinicopathological, prognostic and predictive value of CD166 expression in colorectal cancer: a meta-analysis. Oncotarget, 8(38), 64373-64384. https://doi.org/10.18632/oncotarget.17442

Keller, L., Werner, S., & Pantel, K. (2019). Biology and clinical relevance of EpCAM. Cell stress, 3(6), 165-180. https://doi.org/10.15698/cst2019.06.188

Boesch, M., Spizzo, G., & Seeber, A. (2018). Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem cells translational medicine, 7(6), 495-501. https://doi.org/10.1002/sctm.17-0289

Chai, X. B., Song, R. F., & Xu, F. (2015). Expression changes in epithelial cell adhesion molecule during colorectal cancer tumorigenesis. Genetics and molecular research : GMR, 14(3), 7624-7629. https://doi.org/10.4238/2015.July.13.6

Han, S., Zong, S., Shi, Q., Li, H., Liu, S., Yang, W., Li, W., & Hou, F. (2017). Is Ep-CAM Expression a Diagnostic and Prognostic Biomarker for Colorectal Cancer? A Systematic Meta-Analysis. EBioMedicine, 20, 61-69. https://doi.org/10.1016/j.ebiom.2017.05.025

Huth, C., Kloor, M., Voigt, A. Y., Bozukova, G., Evers, C., Gaspar, H., Tariverdian, M., Schirmacher, P., von Knebel Doeberitz, M., & Bläker, H. (2012). The molecular basis of EPCAM expression loss in Lynch syndrome-associated tumors. Modern pathology, Inc, 25(6), 911-916. https://doi.org/10.1038/modpathol.2012.30

Murakami, N., Mori, T., Nakamura, S., Yoshimoto, S., Honma, Y., Ueno, T., Kobayashi, K., Kashihara, T., Takahashi, K., Inaba, K., Okuma, K., Igaki, H., Nakayama, Y., & Itami, J. (2019). Prognostic value of the expression of epithelial cell adhesion molecules in head and neck squamous cell carcinoma treated by definitive radiotherapy. Journal of radiation research, 60(6), 803-811. https://doi.org/10.1093/jrr/rrz053

Dai, M., Yuan, F., Fu, C., Shen, G., Hu, S., & Shen, G. (2017). Relationship between epithelial cell adhesion molecule (EpCAM) overexpression and gastric cancer patients: A systematic review and meta-analysis. PloS one, 12(4), e0175357. https://doi.org/10.1371/journal.pone.0175357

Gzil, A., Zarębska, I., Bursiewicz, W., Antosik, P., Grzanka, D., & Szylberg, Ł. (2019). Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Molecular biology reports, 46(6), 6629-6645. https://doi.org/10.1007/s11033-019-05058-1

Vassalli, G. (2019). Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem cells international, 2019, 3904645. https://doi.org/10.1155/2019/3904645

Chen, J., Xia, Q., Jiang, B., Chang, W., Yuan, W., Ma, Z., Liu, Z., & Shu, X. (2015). Prognostic Value of Cancer Stem Cell Marker ALDH1 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis. PloS one, 10(12), e0145164. https://doi.org/10.1371/journal.pone.0145164

Singh, S., Arcaroli, J., Thompson, D. C., Messersmith, W., & Vasiliou, V. (2015). Acetaldehyde and retinaldehyde-metabolizing enzymes in colon and pancreatic cancers. Advances in experimental medicine and biology, 815, 281-294. https://doi.org/10.1007/978-3-319-09614-8_16

Mahmood, N. A., Abdulghany, Z. S., & Al-Sudani, I. M. (2018). Expression of Aldehyde Dehydrogenase (ALDH1) and ATP Binding Cassette Transporter G2 (ABCG2) in Iraqi Patients with Colon Cancer and the Relation with Clinicopathological Features. International journal of molecular and cellular medicine, 7(4), 234-240. https://doi.org/10.22088/IJMCM.BUMS.7.4.234

##submission.downloads##

Опубліковано

2023-03-28