Stem cells in the context of colon carcinogenesis (a literature review)




stem cells, cancer stem cells, colon cancer, stem cell research


Aim. To analyze the latest literature data on stem cells in general, intestinal stem cells in particular, as well as cancer stem cells in the context of colon carcinogenesis.

Over the past decade, a significant amount of data confirming the existence of cancer stem cells, their importance in cancer progression, resistance to current treatment regimens, and the occurrence of relapses has been accumulated. These cells are a small fraction of cancer cells that initiate tumor growth and provide tumor tissue heterogeneity. In addition, these cells are distinguished by a significant resistance to effects of various cytotoxic factors. Therefore, the possibility of isolating cancer stem cells and further targeted action are highly important for enabling a complete tumor eradication.

A study on intestinal stem cells has always been in the focus of stem cell biology researchers’ attention because intestinal stem cells are an example of an active cell population that provides regular rapid renewal of the epithelium, which is constantly exposed to toxic, bacterial, and other aggressive factors. Accordingly, colon carcinogenesis is a convenient model for studying the role of stem cells in tumorigenesis.

At the same time, there are two main current schemes of colon carcinogenesis, which are acknowledged – these are so-called “bottom-up” and “top-down” modes of transformed cell spreading. The “bottom-up” scheme was substantiated first, proving to be in good agreement with modern ideas about the structure of intestinal crypts. However, a little later, reports about the possibility of the “top-down” direction began to appear: differentiated cells located in the superficial parts of the intestinal crypts, undergoing mutations, could dedifferentiate and return to the basal parts; a pathological increase in the surface epithelial cells proliferation level was possible as well, leading to an increase in the luminal surface area, formation of grooves mimicking the intestinal crypts.

This review provides the latest data on stem cells in general, in particular on intestinal stem cells, as well as on cancer stem cells in the context of colon carcinogenesis. We also analyze the latest literature data on the possibility of isolating cancer stem cells in colon carcinomas using molecular markers, difficulties associated with this process, and issues that are still unresolved.

Conclusions. Today, there is no doubt about the existence and importance of cancer stem cells in carcinomas. Quite a lot of molecular markers of cancer stem cells have been identified and studied. It is worth noting that certain aspects of cancer stem cells can not be studied one-sidedly but require a multidimensional analysis.

Author Biography

M. A. Shyshkin, Zaporizhzhia State Medical University, Ukraine

MD, PhD, DSc, Associate Professor of the Department of Pathological Anatomy and Forensic Medicine


Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68.

Rossi, F., Noren, H., Jove, R., Beljanski, V., & Grinnemo, K. H. (2020). Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem cell research & therapy, 11(1), 489.

Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature medicine, 23(10), 1124-1134.

Hatano, Y., Fukuda, S., Hisamatsu, K., Hirata, A., Hara, A., & Tomita, H. (2017). Multifaceted Interpretation of Colon Cancer Stem Cells. International journal of molecular sciences, 18(7), 1446.

Barbato, L., Bocchetti, M., Di Biase, A., & Regad, T. (2019). Cancer Stem Cells and Targeting Strategies. Cells, 8(8), 926.

Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine, 3(7), 730-737.

Jahanafrooz, Z., Mosafer, J., Akbari, M., Hashemzaei, M., Mokhtarzadeh, A., & Baradaran, B. (2020). Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. Journal of cellular physiology, 235(5), 4153-4166.

Taniguchi, H., Moriya, C., Igarashi, H., Saitoh, A., Yamamoto, H., Adachi, Y., & Imai, K. (2016). Cancer stem cells in human gastrointestinal cancer. Cancer science, 107(11), 1556-1562.

Oue, N., Sentani, K., Sakamoto, N., Uraoka, N., & Yasui, W. (2019). Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells. International journal of clinical oncology, 24(7), 771-778.

Heng, W. S., Gosens, R., & Kruyt, F. (2019). Lung cancer stem cells: origin, features, maintenance mechanisms and therapeutic targeting. Biochemical pharmacology, 160, 121-133.

Butti, R., Gunasekaran, V. P., Kumar, T., Banerjee, P., & Kundu, G. C. (2019). Breast cancer stem cells: Biology and therapeutic implications. The international journal of biochemistry & cell biology, 107, 38-52.

Rycaj, K., & Tang, D. G. (2015). Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer research, 75(19), 4003-4011.

Nimmakayala, R. K., Batra, S. K., & Ponnusamy, M. P. (2019). Unraveling the journey of cancer stem cells from origin to metastasis. Biochimica et biophysica acta. Reviews on cancer, 1871(1), 50-63.

Gehart, H., & Clevers, H. (2019). Tales from the crypt: new insights into intestinal stem cells. Nature reviews. Gastroenterology & hepatology, 16(1), 19-34.

Munro, M. J., Wickremesekera, S. K., Peng, L., Tan, S. T., & Itinteang, T. (2018). Cancer stem cells in colorectal cancer: a review. Journal of clinical pathology, 71(2), 110-116.

Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. The American journal of anatomy, 141(4), 537-561.

Hong, Y., Liew, S. C., Thean, L. F., Tang, C. L., & Cheah, P. Y. (2018). Human colorectal cancer initiation is bidirectional, and cell growth, metabolic genes and transporter genes are early drivers of tumorigenesis. Cancer letters, 431, 213-218.

Patel, A., Tripathi, G., Gopalakrishnan, K., Williams, N., & Arasaradnam, R. P. (2015). Field cancerisation in colorectal cancer: a new frontier or pastures past?. World journal of gastroenterology, 21(13), 3763-3772.

Sphyris, N., Hodder, M. C., & Sansom, O. J. (2021). Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers, 13(5), 1000.

Angius, A., Scanu, A. M., Arru, C., Muroni, M. R., Rallo, V., Deiana, G., Ninniri, M. C., Carru, C., Porcu, A., Pira, G., Uva, P., Cossu-Rocca, P., & De Miglio, M. R. (2021). Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. International journal of molecular sciences, 22(4), 1603.

Alison, M. R. (2020). The cellular origins of cancer with particular reference to the gastrointestinal tract. International journal of experimental pathology, 101(5), 132-151.

Leung, C., Tan, S. H., & Barker, N. (2018). Recent Advances in Lgr5+ Stem Cell Research. Trends in cell biology, 28(5), 380-391.

Drost, J., van Jaarsveld, R. H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R. M., Offerhaus, G. J., Begthel, H., Korving, J., van de Wetering, M., Schwank, G., Logtenberg, M., Cuppen, E., Snippert, H. J., Medema, J. P., Kops, G. J., & Clevers, H. (2015). Sequential cancer mutations in cultured human intestinal stem cells. Nature, 521(7550), 43-47.

Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Watanabe, T., Kanai, T., & Sato, T. (2015). Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nature medicine, 21(3), 256-262.

Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., & Sato, T. (2017). Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 545(7653), 187-192.

Fumagalli, A., Oost, K. C., Kester, L., Morgner, J., Bornes, L., Bruens, L., Spaargaren, L., Azkanaz, M., Schelfhorst, T., Beerling, E., Heinz, M. C., Postrach, D., Seinstra, D., Sieuwerts, A. M., Martens, J., van der Elst, S., van Baalen, M., Bhowmick, D., Vrisekoop, N., Ellenbroek, S., … van Rheenen, J. (2020). Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer. Cell stem cell, 26(4), 569-578.e7.

De Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., Anderson, J. E., Storm, E. E., Modrusan, Z., Koeppen, H., Dijkgraaf, G. J., Piskol, R., & de Sauvage, F. J. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676-680.

Chen, C., Zhao, S., Karnad, A., & Freeman, J. W. (2018). The biology and role of CD44 in cancer progression: therapeutic implications. Journal of hematology & oncology, 11(1), 64.

Holah, N. S., Aiad, H. A., Asaad, N. Y., Elkhouly, E. A., & Lasheen, A. G. (2017). Evaluation of the role of CD44 as a cancer stem cell marker in colorectal carcinoma: immunohistochemical study. Menoufia Medical Journal, 30(1), 174.

Wang, L., Zuo, X., Xie, K., & Wei, D. (2018). The Role of CD44 and Cancer Stem Cells. Methods in molecular biology, 1692, 31-42.

Barzegar Behrooz, A., Syahir, A., & Ahmad, S. (2019). CD133: beyond a cancer stem cell biomarker. Journal of drug targeting, 27(3), 257-269.

Jang, J. W., Song, Y., Kim, S. H., Kim, J., & Seo, H. R. (2017). Potential mechanisms of CD133 in cancer stem cells. Life sciences, 184, 25-29.

Liou, G. Y. (2019). CD133 as a regulator of cancer metastasis through the cancer stem cells. The international journal of biochemistry & cell biology, 106, 1-7.

Prabavathy, D., & Ramadoss, N. (2019). Heterogeneity of Small Cell Lung Cancer Stem Cells. Advances in experimental medicine and biology, 1139, 41-57.

Liu, C. L., Chen, Y. J., Fan, M. H., Liao, Y. J., & Mao, T. L. (2020). Characteristics of CD133-Sustained Chemoresistant Cancer Stem-Like Cells in Human Ovarian Carcinoma. International journal of molecular sciences, 21(18), 6467.

Altevogt, P., Sammar, M., Hüser, L., & Kristiansen, G. (2021). Novel insights into the function of CD24: A driving force in cancer. International journal of cancer, 148(3), 546-559.

Li, W., Ma, H., Zhang, J., Zhu, L., Wang, C., & Yang, Y. (2017). Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Scientific reports, 7(1), 13856.

Tarhriz, V., Bandehpour, M., Dastmalchi, S., Ouladsahebmadarek, E., Zarredar, H., & Eyvazi, S. (2019). Overview of CD24 as a new molecular marker in ovarian cancer. Journal of cellular physiology, 234(3), 2134-2142.

Ishiwata, T., Matsuda, Y., Yoshimura, H., Sasaki, N., Ishiwata, S., Ishikawa, N., Takubo, K., Arai, T., & Aida, J. (2018). Pancreatic cancer stem cells: features and detection methods. Pathology oncology research : POR, 24(4), 797-805.

Enz, N., Vliegen, G., De Meester, I., & Jungraithmayr, W. (2019). CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacology & therapeutics, 198, 135-159.

Lefort, É. C., Diaconu, B., Bentley, V. L., & Blay, J. (2020). Apigenin upregulation of CD26/DPPIV on colon epithelial cells requires inhibition of casein kinase 2. Food science & nutrition, 8(10), 5321-5329.

Beckenkamp, A., Davies, S., Willig, J. B., & Buffon, A. (2016). DPPIV/CD26: a tumor suppressor or a marker of malignancy?. Tumour biology, 37(6), 7059-7073.

Hamidi, H., Pietilä, M., & Ivaska, J. (2016). The complexity of integrins in cancer and new scopes for therapeutic targeting. British journal of cancer, 115(9), 1017-1023.

Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nature reviews. Cancer, 18(9), 533-548.

Brinkhof, B., Zhang, B., Cui, Z., Ye, H., & Wang, H. (2020). ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene: X, 5, 100031.

Han, S., Yang, W., Zong, S., Li, H., Liu, S., Li, W., Shi, Q., & Hou, F. (2017). Clinicopathological, prognostic and predictive value of CD166 expression in colorectal cancer: a meta-analysis. Oncotarget, 8(38), 64373-64384.

Keller, L., Werner, S., & Pantel, K. (2019). Biology and clinical relevance of EpCAM. Cell stress, 3(6), 165-180.

Boesch, M., Spizzo, G., & Seeber, A. (2018). Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem cells translational medicine, 7(6), 495-501.

Chai, X. B., Song, R. F., & Xu, F. (2015). Expression changes in epithelial cell adhesion molecule during colorectal cancer tumorigenesis. Genetics and molecular research : GMR, 14(3), 7624-7629.

Han, S., Zong, S., Shi, Q., Li, H., Liu, S., Yang, W., Li, W., & Hou, F. (2017). Is Ep-CAM Expression a Diagnostic and Prognostic Biomarker for Colorectal Cancer? A Systematic Meta-Analysis. EBioMedicine, 20, 61-69.

Huth, C., Kloor, M., Voigt, A. Y., Bozukova, G., Evers, C., Gaspar, H., Tariverdian, M., Schirmacher, P., von Knebel Doeberitz, M., & Bläker, H. (2012). The molecular basis of EPCAM expression loss in Lynch syndrome-associated tumors. Modern pathology, Inc, 25(6), 911-916.

Murakami, N., Mori, T., Nakamura, S., Yoshimoto, S., Honma, Y., Ueno, T., Kobayashi, K., Kashihara, T., Takahashi, K., Inaba, K., Okuma, K., Igaki, H., Nakayama, Y., & Itami, J. (2019). Prognostic value of the expression of epithelial cell adhesion molecules in head and neck squamous cell carcinoma treated by definitive radiotherapy. Journal of radiation research, 60(6), 803-811.

Dai, M., Yuan, F., Fu, C., Shen, G., Hu, S., & Shen, G. (2017). Relationship between epithelial cell adhesion molecule (EpCAM) overexpression and gastric cancer patients: A systematic review and meta-analysis. PloS one, 12(4), e0175357.

Gzil, A., Zarębska, I., Bursiewicz, W., Antosik, P., Grzanka, D., & Szylberg, Ł. (2019). Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Molecular biology reports, 46(6), 6629-6645.

Vassalli, G. (2019). Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem cells international, 2019, 3904645.

Chen, J., Xia, Q., Jiang, B., Chang, W., Yuan, W., Ma, Z., Liu, Z., & Shu, X. (2015). Prognostic Value of Cancer Stem Cell Marker ALDH1 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis. PloS one, 10(12), e0145164.

Singh, S., Arcaroli, J., Thompson, D. C., Messersmith, W., & Vasiliou, V. (2015). Acetaldehyde and retinaldehyde-metabolizing enzymes in colon and pancreatic cancers. Advances in experimental medicine and biology, 815, 281-294.

Mahmood, N. A., Abdulghany, Z. S., & Al-Sudani, I. M. (2018). Expression of Aldehyde Dehydrogenase (ALDH1) and ATP Binding Cassette Transporter G2 (ABCG2) in Iraqi Patients with Colon Cancer and the Relation with Clinicopathological Features. International journal of molecular and cellular medicine, 7(4), 234-240.



How to Cite

Shyshkin MA. Stem cells in the context of colon carcinogenesis (a literature review). Zaporozhye medical journal [Internet]. 2023Mar.28 [cited 2024Apr.25];25(2):164-71. Available from: