Modern strategies of alternative insulin delivery systems

Authors

DOI:

https://doi.org/10.14739/2310-1210.2023.3.274844

Keywords:

diabetes mellitus, oral drug administration, insulins

Abstract

There are barriers to initiation, use or intensification of insulin therapy for patients with diabetes. A non-invasive therapeutic approach in insulin therapy should overcome these barriers. The development of alternative methods of insulin delivery is a complex task of fundamental medicine and pharmacy. The availability of oral / nasal insulin helps millions of people with diabetes avoid daily burden of subcutaneous insulin injections.

The aim of the work was to study the current state of the latest developments in alternative routes of insulin delivery, their technology, and clinical trials.

Materials and methods. The latest publications of scientific research on non-invasive insulin delivery systems were the study objects. Content analysis, bibliosemantic, analytical, summarizing analyzes were used.

Results. The smart insulin delivery systems and pain-reducing technologies have been developed over the years. For this, research was conducted on numerous materials and technologies, including nanoparticles, hydrogels, liposomes, ionic liquids or special devices.

Several alternative delivery technologies have been identified to reduce pain (pain-reducing technologies): oral, inhaled, intranasal, buccal, transdermal, and long-acting injectable insulins, but with low frequency of use. Various modern technological approaches are applying, namely, chemical modification of insulin; mucoadhesion system; protease inhibitors; increased absorption; particle delivery systems. Smart insulin delivery technologies are based on different strategies, materials, and glucose-responsive synthesis and conversion, but a common “diffuse-type” insulin release mechanism is used. Innovations in insulin chemistry and formulations have shown improved clinical outcomes when used.

Conclusions. Innovations in alternative insulin delivery systems include algorithms for continuous glucose monitoring systems, glucose-sensitive polymer matrices and biological structures with insulin. The introduction of non-invasive systems would contribute to an earlier start of insulin therapy on medical advice, ensuring better glycemic control and reducing the risk of complications, which are the main burden on the health care system. The use of insulin in the form of alternative delivery systems may also be promising in the prevention of type 1 diabetes and other diseases.

Author Biographies

І. О. Vlasenko, Shupyk National Healthcare University of Ukraine, Kyiv

PhD, Associate Professor of the Department of Pharmaceutical Technology and Biopharmacy

L. L. Davtian, Shupyk National Healthcare University of Ukraine, Kyiv

PhD, DSc, Professor, Head of the Department of Pharmaceutical Technology and Biopharmaceutics

V. V. Hladyshev, Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

PhD, DSc, Professor, Head of the Department of Medicines Technology

References

International Diabetes Federation. (2021). Diabetes Atlas, (10th ed.). https://www.diabetesatlas.org

Banting, F. G. (1925). Diabetes and insulin: Nobel lecture. https://www.nobelprize.org/prizes/medicine/1923/banting/lecture/

Home, P. (2021). The evolution of insulin therapy. Diabetes research and clinical practice, 175, 108816. https://doi.org/10.1016/j.diabres.2021.108816

Bhutta, Z. A., Salam, R. A., Gomber, A., Lewis-Watts, L., Narang, T., Mbanya, J. C., & Alleyne, G. (2021). A century past the discovery of insulin: global progress and challenges for type 1 diabetes among children and adolescents in low-income and middle-income countries. Lancet, 398(10313), 1837-1850. https://doi.org/10.1016/S0140-6736(21)02247-9

Drucker, D. J. (2021). Transforming type 1 diabetes: the next wave of innovation. Diabetologia, 64(5), 1059-1065. https://doi.org/10.1007/s00125-021-05396-5

Wright, A., Burden, A. C., Paisey, R. B., Cull, C. A., Holman, R. R., & U.K. Prospective Diabetes Study Group (2002). Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes care, 25(2), 330-336. https://doi.org/10.2337/diacare.25.2.330

Turchin, A., Hosomura, N., Zhang, H., Malmasi, S., & Shubina, M. (2020). Predictors and consequences of declining insulin therapy by individuals with type 2 diabetes. Diabetic medicine, 37(5), 814-821. https://doi.org/10.1111/dme.14260

Hendrieckx, C., Halliday, J. A., Beeney, L. J., & Speight, J. (2019). Diabetes and emotional health: a practical guide for healthcare professionals supporting adults with Type 1 and Type 2 diabetes, (2nd ed.) London: Diabetes UK. https://www.diabetes.org.uk/resources-s3/2019-03/0506%20Diabetes%20UK%20Australian%20Handbook_P4_FINAL_1.pdf

Sood, A., & Panchagnula, R. (2001). Peroral route: an opportunity for protein and peptide drug delivery. Chemical reviews, 101(11), 3275-3303. https://doi.org/10.1021/cr000700m

Raghavendran, S., Inbaraj, L. R., & Norman, G. (2020). Reason for refusal of insulin therapy among type 2 diabetes mellitus patients in primary care clinic in Bangalore. Journal of family medicine and primary care, 9(2), 854-858. https://doi.org/10.4103/jfmpc.jfmpc_973_19

Truong, T. H., Nguyen, T. T., Armor, B. L., & Farley, J. R. (2017). Errors in the Administration Technique of Insulin Pen Devices: A Result of Insufficient Education. Diabetes therapy : research, treatment and education of diabetes and related disorders, 8(2), 221-226. https://doi.org/10.1007/s13300-017-0242-y

NCD Risk Factor Collaboration (NCD-RisC) (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 387(10027), 1513-1530. https://doi.org/10.1016/S0140-6736(16)00618-8

Brayden, D. (2021). The Centenary of the Discovery of Insulin: An Update on the Quest for Oral Delivery. Frontiers in Drug Delivery, 1, 726675. https://doi.org/10.3389/fddev.2021.726675

Chatterjee, S., Bhushan Sharma, C., Lavie, C. J., Adhikari, A., Deedwania, P., & O'keefe, J. H. (2020). Oral insulin: an update. Minerva endocrinologica, 45(1), 49-60. https://doi.org/10.23736/S0391-1977.19.03055-4

Chan, J., & Cheng-Lai, A. (2017). Inhaled Insulin: A Clinical and Historical Review. Cardiology in review, 25(3), 140-146. https://doi.org/10.1097/CRD.0000000000000143

Setji, T. L., Hong, B. D., & Feinglos, M. N. (2016). Technosphere insulin: inhaled prandial insulin. Expert opinion on biological therapy, 16(1), 111-117. https://doi.org/10.1517/14712598.2016.1121230

Dovc, K., & Battelino, T. (2020). Evolution of Diabetes Technology. Endocrinology and metabolism clinics of North America, 49(1), 1-18. https://doi.org/10.1016/j.ecl.2019.10.009

Cernea, S., & Raz, I. (2020). Insulin Therapy: Future Perspectives. American journal of therapeutics, 27(1), e121-e132. https://doi.org/10.1097/MJT.0000000000001076

Rege, N. K., Phillips, N. F. B., & Weiss, M. A. (2017). Development of glucose-responsive 'smart' insulin systems. Current opinion in endocrinology, diabetes, and obesity, 24(4), 267-278. https://doi.org/10.1097/MED.0000000000000345

Halberg, I. B., Lyby, K., Wassermann, K., Heise, T., Zijlstra, E., & Plum-Mörschel, L. (2019). Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. The lancet. Diabetes & endocrinology, 7(3), 179-188. https://doi.org/10.1016/S2213-8587(18)30372-3

Easa, N., Alany, R. G., Carew, M., & Vangala, A. (2019). A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug discovery today, 24(2), 440-451. https://doi.org/10.1016/j.drudis.2018.11.010

Seaquist, E. R., Blonde, L., McGill, J. B., Heller, S. R., Kendall, D. M., Bumpass, J. B., Pompilio, F. M., & Grant, M. L. (2020). Hypoglycaemia is reduced with use of inhaled Technosphere® Insulin relative to insulin aspart in type 1 diabetes mellitus. Diabetic medicine, 37(5), 752-759. https://doi.org/10.1111/dme.14202

Nuffer, W., & Trujillo, J. (2016). The Role of Inhaled Insulin in the Management of Type 2 Diabetes. Pharmacology & Pharmacy, 07(04), 162-169. https://doi.org/10.4236/pp.2016.74021

Hallschmid M. (2021). Intranasal insulin. Journal of neuroendocrinology, 33(4), e12934. https://doi.org/10.1111/jne.12934

Caffarel-Salvador, E., Kim, S., Soares, V., Tian, R. Y., Stern, S. R., Minahan, D., Yona, R., Lu, X., Zakaria, F. R., Collins, J., Wainer, J., Wong, J., McManus, R., Tamang, S., McDonnell, S., Ishida, K., Hayward, A., Liu, X., Hubálek, F., Fels, J., … Traverso, G. (2021). A microneedle platform for buccal macromolecule delivery. Science advances, 7(4), eabe2620. https://doi.org/10.1126/sciadv.abe2620

Rosenstock, J., Bajaj, H. S., Janež, A., Silver, R., Begtrup, K., Hansen, M. V., Jia, T., Goldenberg, R., & NN1436-4383 Investigators (2020). Once-Weekly Insulin for Type 2 Diabetes without Previous Insulin Treatment. The New England journal of medicine, 383(22), 2107-2116. https://doi.org/10.1056/NEJMoa2022474

Shah, R. B., Patel, M., Maahs, D. M., & Shah, V. N. (2016). Insulin delivery methods: Past, present and future. International journal of pharmaceutical investigation, 6(1), 1-9. https://doi.org/10.4103/2230-973X.176456

Rasmussen, C. H., Røge, R. M., Ma, Z., Thomsen, M., Thorisdottir, R. L., Chen, J. W., Mosekilde, E., & Colding-Jørgensen, M. (2014). Insulin aspart pharmacokinetics: an assessment of its variability and underlying mechanisms. European journal of pharmaceutical sciences, 62, 65-75. https://doi.org/10.1016/j.ejps.2014.05.010

Souto, E. B., Souto, S. B., Campos, J. R., Severino, P., Pashirova, T. N., Zakharova, L. Y., Silva, A. M., Durazzo, A., Lucarini, M., Izzo, A. A., & Santini, A. (2019). Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules, 24(23), 4209. https://doi.org/10.3390/molecules24234209

Chen, Z., Han, S., Yang, X., Xu, L., Qi, H., Hao, G., Cao, J., Liang, Y., Ma, Q., Zhang, G., & Sun, Y. (2020). Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid. International journal of nanomedicine, 15, 4877-4898. https://doi.org/10.2147/IJN.S251627

Ge, L., You, X., Zhang, Y., Huang, K., Lu, X., Ren, Y., Zhu, Y., Dhinakar, A., Wu, J., & Qian, H. (2017). Development of self-emulsifying nanoplatform as anti-diabetic sulfonylurea carrier for oral diabetes therapy. Journal of Biomedical Nanotechnology, 13(8), 931-945. https://doi.org/10.1166/jbn.2017.2385

Al Rubeaan, K., Rafiullah, M., & Jayavanth, S. (2016). Oral insulin delivery systems using chitosan-based formulation: a review. Expert opinion on drug delivery, 13(2), 223-237. https://doi.org/10.1517/17425247.2016.1107543

Li, L., Jiang, G., Yu, W., Liu, D., Chen, H., Liu, Y., Huang, Q., Tong, Z., Yao, J., & Kong, X. (2016). A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin. Materials science & engineering. C, Materials for biological applications, 69, 37-45. https://doi.org/10.1016/j.msec.2016.06.059

Sun, Q., Zhang, Z., Zhang, R., Gao, R., & McClements, D. J. (2018). Development of Functional or Medical Foods for Oral Administration of Insulin for Diabetes Treatment: Gastroprotective Edible Microgels. Journal of agricultural and food chemistry, 66(19), 4820-4826. https://doi.org/10.1021/acs.jafc.8b00233

Gedawy, A., Martinez, J., Al-Salami, H., & Dass, C. R. (2018). Oral insulin delivery: existing barriers and current counter-strategies. The Journal of pharmacy and pharmacology, 70(2), 197-213. https://doi.org/10.1111/jphp.12852

Jarosinski, M. A., Dhayalan, B., Rege, N., Chatterjee, D., & Weiss, M. A. (2021). 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia, 64(5), 1016-1029. https://doi.org/10.1007/s00125-021-05422-6

Primavera, R., Bellotti, E., Di Mascolo, D., Di Francesco, M., Wang, J., Kevadiya, B. D., De Pascale, A., Thakor, A. S., & Decuzzi, P. (2021). Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS applied materials & interfaces, 13(45), 53618-53629. https://doi.org/10.1021/acsami.1c16768

Feyzioğlu-Demir, E., Üzüm, Ö. B. & Akgöl, S. (2022). Swelling and diffusion behaviour of spherical morphological polymeric hydrogel membranes (SMPHMs) containing epoxy groups and their application as drug release systems. Polymer Bulletin, 79. https://doi.org/10.1007/s00289-022-04368-y

Xie, H., Ma, X., Lin, W., Dong, S., Liu, Q., Chen, Y., & Gao, Q. (2021). Linear Dextrin as Potential Insulin Delivery System: Effect of Degree of Polymerization on the Physicochemical Properties of Linear Dextrin-Insulin Inclusion Complexes. Polymers, 13(23), 4187. https://doi.org/10.3390/polym13234187

Li, C., Liu, X., Liu, Y., Huang, F., Wu, G., Liu, Y., Zhang, Z., Ding, Y., Lv, J., Ma, R., An, Y., & Shi, L., (2019). Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale, 11(18), 9163-9175. https://doi.org/10.1039/c9nr01554j

Chai, Z., Dong, H., Sun, X., Fan, Y., Wang, Y., & Huang, F. (2020). Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. International journal of biological macromolecules, 159, 640-647. https://doi.org/10.1016/j.ijbiomac.2020.05.097

Mohammadpour, F., Hadizadeh, F., Tafaghodi, M., Sadri, K., Mohammadpour, A. H., Kalani, M. R., Gholami, L., Mahmoudi, A., & Chamani, J. (2019). Preparation, in vitro and in vivo evaluation of PLGA/Chitosan based nano-complex as a novel insulin delivery formulation. International journal of pharmaceutics, 572, 118710. https://doi.org/10.1016/j.ijpharm.2019.118710

Sarkar, S., Das, D., Dutta, P., Kalita, J., Wann, S. B., & Manna, P. (2020). Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydrate polymers, 247, 116594. https://doi.org/10.1016/j.carbpol.2020.116594

Matsumoto, A., Tanaka, M., Matsumoto, H., Ochi, K., Moro-Oka, Y., Kuwata, H., Yamada, H., Shirakawa, I., Miyazawa, T., Ishii, H., Kataoka, K., Ogawa, Y., Miyahara, Y., & Suganami, T. (2017). Synthetic "smart gel" provides glucose-responsive insulin delivery in diabetic mice. Science advances, 3(11), eaaq0723. https://doi.org/10.1126/sciadv.aaq0723

Mohanty, A. R., Ravikumar, A., & Peppas, N. A. (2022). Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications. Regenerative biomaterials, 9, rbac056. https://doi.org/10.1093/rb/rbac056

Farhoudi, N., Leu, H. Y., Laurentius, L. B., Magda, J. J., Solzbacher, F., & Reiche, C. F. (2020). Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing. ACS sensors, 5(7), 1882-1889. https://doi.org/10.1021/acssensors.9b02180

Song, J., Zhang, Y., Chan, S. Y., Du, Z., Yan, Y., Wang, T., Li, P., & Huang, W. (2021). Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 5, 26. https://doi.org/10.1038/s41528-021-00122-y

Yu, J., Zhang, Y., Sun, W., Kahkoska, A. R., Wang, J., Buse, J. B., & Gu, Z. (2017). Insulin-Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 13(19), 10.1002/smll.201603028. https://doi.org/10.1002/smll.201603028

Culebras, M., Barrett, A., Pishnamazi, M., Walker, G. M., & Collins, M. N. (2021). Wood-Derived Hydrogels as a Platform for Drug-Release Systems. ACS sustainable chemistry & engineering, 9(6), 2515-2522. https://doi.org/10.1021/acssuschemeng.0c08022

Zhang, Y., Zhou, W., Shen, L., Lang, L., Huang, X., Sheng, H., Ning, G., & Wang, W. (2022). Safety, Pharmacokinetics, and Pharmacodynamics of Oral Insulin Administration in Healthy Subjects: A Randomized, Double-Blind, Phase 1 Trial. Clinical pharmacology in drug development, 11(5), 606-614. https://doi.org/10.1002/cpdd.1060

Hubálek, F., Refsgaard, H. H. F., Gram-Nielsen, S., Madsen, P., Nishimura, E., Münzel, M., Brand, C. L., Stidsen, C. E., Claussen, C. H., Wulff, E. M., Pridal, L., Ribel, U., Kildegaard, J., Porsgaard, T., Johansson, E., Steensgaard, D. B., Hovgaard, L., Glendorf, T., Hansen, B. F., Jensen, M. K., … Kjeldsen, T. (2020). Molecular engineering of safe and efficacious oral basal insulin. Nature communications, 11(1), 3746. https://doi.org/10.1038/s41467-020-17487-9

Benyettou, F., Kaddour, N., Prakasam, T., Das, G., Sharma, S. K., Thomas, S. A., Bekhti-Sari, F., Whelan, J., Alkhalifah, M. A., Khair, M., Traboulsi, H., Pasricha, R., Jagannathan, R., Mokhtari-Soulimane, N., Gándara, F., & Trabolsi, A. (2021). In vivo oral insulin delivery via covalent organic frameworks. Chemical science, 12(17), 6037-6047. https://doi.org/10.1039/d0sc05328g

Domokos, G., & Várkonyi, P. L. (2008). Geometry and self-righting of turtles. Proceedings. Biological sciences, 275(1630), 11-17. https://doi.org/10.1098/rspb.2007.1188

Abramson, A., Caffarel-Salvador, E., Khang, M., Dellal, D., Silverstein, D., Gao, Y., Frederiksen, M. R., Vegge, A., Hubálek, F., Water, J. J., Friderichsen, A. V., Fels, J., Kirk, R. K., Cleveland, C., Collins, J., Tamang, S., Hayward, A., Landh, T., Buckley, S. T., Roxhed, N., … Traverso, G. (2019). An ingestible self-orienting system for oral delivery of macromolecules. Science, 363(6427), 611-615. https://doi.org/10.1126/science.aau2277

Abramson, A., Frederiksen, M. R., Vegge, A., Jensen, B., Poulsen, M., Mouridsen, B., Jespersen, M. O., Kirk, R. K., Windum, J., Hubálek, F., Water, J. J., Fels, J., Gunnarsson, S. B., Bohr, A., Straarup, E. M., Ley, M. W. H., Lu, X., Wainer, J., Collins, J., Tamang, S., … Traverso, G. (2022). Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nature biotechnology, 40(1), 103-109. https://doi.org/10.1038/s41587-021-01024-0

Eldor, R., Neutel, J., Homer, K., & Kidron, M. (2021). Efficacy and safety of 28-day treatment with oral insulin (ORMD-0801) in patients with type 2 diabetes: A randomized, placebo-controlled trial. Diabetes, obesity & metabolism, 23(11), 2529-2538. https://doi.org/10.1111/dom.14499

Eldor, R., G. Fleming, A., Neutel, J., Homer, K. E., Kidron, M., & Rosenstock J. (2020). 105-LB: Evening Oral Insulin (ORMD-0801) Glycemic Effects in Uncontrolled T2DM Patients. Diabetes, 69(Supplement_1). https://doi.org/10.2337/db20-105-lb

Zijlstra, E., Heinemann, L., & Plum-Mörschel, L. (2014). Oral insulin reloaded: a structured approach. Journal of diabetes science and technology, 8(3), 458-465. https://doi.org/10.1177/1932296814529988

New Drug Approvals. (n.d.). OI 338. https://newdrugapprovals.org/2021/01/25/oi-338/

Lansdowne, L. E., & Campbell, M. (2021, April 28). A Step Closer to Orally-Delivered Insulin for Diabetes. Technology Networks. Drug Delivery. https://www.technologynetworks.com/drug-discovery/articles/a-step-closer-to-orally-delivered-insulin-for-diabetes-348218

Aquestive. (2020). Innovative Drug Delivery. https://aquestive.com/innovative-drug-delivery-pharmfilm/

Harrison, L. C. (2021). The dark side of insulin: A primary autoantigen and instrument of self-destruction in type 1 diabetes. Molecular metabolism, 52, 101288. https://doi.org/10.1016/j.molmet.2021.101288

Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group, Krischer, J. P., Schatz, D. A., Bundy, B., Skyler, J. S., & Greenbaum, C. J. (2017). Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial. JAMA, 318(19), 1891-1902. https://doi.org/10.1001/jama.2017.17070

Bonifacio, E., Ziegler, A. G., Klingensmith, G., Schober, E., Bingley, P. J., Rottenkolber, M., Theil, A., Eugster, A., Puff, R., Peplow, C., Buettner, F., Lange, K., Hasford, J., Achenbach, P., & Pre-POINT Study Group (2015). Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA, 313(15), 1541-1549. https://doi.org/10.1001/jama.2015.2928

Zhang, Y., Yu, J., Kahkoska, A. R., Wang, J., Buse, J. B., & Gu, Z. (2019). Advances in transdermal insulin delivery. Advanced drug delivery reviews, 139, 51-70. https://doi.org/10.1016/j.addr.2018.12.006

Vadlapatla, R., Wong, E. Y., & Gayakwad, S. G. (2017). Electronic drug delivery systems: Journal of Drug Delivery Science and Technology, 41, 359-366. https://doi.org/10.1016/j.jddst.2017.08.008

Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y., & Gu, Z. (2016). Mechanical Force-Triggered Drug Delivery. Chemical reviews, 116(19), 12536-12563. https://doi.org/10.1021/acs.chemrev.6b00369

Bhatnagar, S., Dave, K., & Venuganti, V. V. K. (2017). Microneedles in the clinic. Journal of controlled release, 260, 164-182. https://doi.org/10.1016/j.jconrel.2017.05.029

Jin, X., Zhu, D. D., Chen, B. Z., Ashfaq, M., & Guo, X. D. (2018). Insulin delivery systems combined with microneedle technology. Advanced drug delivery reviews, 127, 119-137. https://doi.org/10.1016/j.addr.2018.03.011

Rzhevskiy, A. S., Singh, T. R. R., Donnelly, R. F., & Anissimov, Y. G. (2018). Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. Journal of controlled release, 270, 184-202. https://doi.org/10.1016/j.jconrel.2017.11.048

Larrañeta, E., McCrudden, M. T., Courtenay, A. J., & Donnelly, R. F. (2016). Microneedles: A New Frontier in Nanomedicine Delivery. Pharmaceutical research, 33(5), 1055-1073. https://doi.org/10.1007/s11095-016-1885-5

Prausnitz, M. R. (2017). Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annual review of chemical and biomolecular engineering, 8, 177-200. https://doi.org/10.1146/annurev-chembioeng-060816-101514

Gradel, A. K. J., Porsgaard, T., Lykkesfeldt, J., Seested, T., Gram-Nielsen, S., Kristensen, N. R., & Refsgaard, H. H. F. (2018). Factors Affecting the Absorption of Subcutaneously Administered Insulin: Effect on Variability. Journal of diabetes research, 2018, 1205121. https://doi.org/10.1155/2018/1205121

Barclay, L. (2006, February 9). Exubera Approved Despite Initial Lung Function Concerns. Medscape. https://www.medscape.com/viewarticle/523294

Khan, A. B., Ahmad, A., Ahmad, S., Gul, M., Iqbal, F., Ullah, H., Laiba, S., & Orakzai, U. K. (2022). Comparative Analysis of Inhaled Insulin With Other Types in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cureus, 14(4), e23731. https://doi.org/10.7759/cureus.23731

Annabestani, Z., Sharghi, S., Shahbazi, S., Monfared, S., Karimi, F., Taheri, E., Heshmat, R., & Larijani, B. (2010). Insulin buccal spray (Oral-Lyn) efficacy in type 1 diabetes. Iranian Journal of Diabetes and Lipid Disorders, 9, 1-4.

Nazar, H., Caliceti, P., Carpenter, B., El-Mallah, A. I., Fatouros, D. G., Roldo, M., van der Merwe, S. M., & Tsibouklis, J. (2013). A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. Biomaterials science, 1(3), 306-314. https://doi.org/10.1039/c2bm00132b

Tashima, T. (2020). Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules, 25(21), 5188. https://doi.org/10.3390/molecules25215188

Novak, V., Mantzoros, C. S., Novak, P., McGlinchey, R., Dai, W., Lioutas, V., Buss, S., Fortier, C. B., Khan, F., Aponte Becerra, L., & Ngo, L. H. (2022). MemAID: Memory advancement with intranasal insulin vs. placebo in type 2 diabetes and control participants: a randomized clinical trial. Journal of neurology, 269(9), 4817-4835. https://doi.org/10.1007/s00415-022-11119-6

Published

2023-05-31

How to Cite

1.
Vlasenko ІО, Davtian LL, Hladyshev VV. Modern strategies of alternative insulin delivery systems. Zaporozhye medical journal [Internet]. 2023May31 [cited 2024Apr.25];25(3):262-9. Available from: http://zmj.zsmu.edu.ua/article/view/274844