Сучасні стратегії альтернативних систем доставки інсуліну
DOI:
https://doi.org/10.14739/2310-1210.2023.3.274844Ключові слова:
цукровий діабет, пероральне введення ліків, інсуліниАнотація
Визначають певні перепони для початку, використання або інтенсифікації інсулінотерапії у хворих на цукровий діабет (ЦД). Неінвазивний терапевтичний підхід в інсулінотерапії має подолати ці бар’єри. Розроблення альтернативних способів доставки інсуліну – складне завдання фундаментальної медицини та фармації. Наявність перорального / назального інсуліну звільнить мільйони хворих на ЦД від щоденних підшкірних ін’єкцій інсуліну.
Мета роботи – дослідження новітніх розробок щодо альтернативних шляхів введення інсуліну, їхніх технологічних аспектів і досягнень клінічного застосування.
Матеріали та методи. Об’єкт дослідження – останні результати наукових досліджень щодо неінвазійних систем доставлення інсуліну. Застосовували контент-аналіз, бібліосемантичний, аналітичний, узагальнювальний методи.
Результати. Нині розроблено «розумні» системи доставки інсуліну та технології доставки, що зменшують біль. Для цього здійснили дослідження численних матеріалів і технологій, включаючи наночастки, гідрогелі, ліпосоми, іонні рідини та спеціальні пристрої.
Розрізняють кілька альтернативних технологій доставки, що зменшують біль: пероральні, інгаляційні, інтраназальні, букальні, трансдермальні та пролонговані ін’єкційні інсуліни, частота застосування яких зменшена. Застосовують різні сучасні технологічні підходи, як-от хімічної модифікації інсуліну, мукоадгезійні системи, інгібітори протеази, підвищення абсорбції, системи доставлення часток.
Технології «розумної» доставки інсуліну ґрунтуються на різних стратегіях, матеріалах, шляхах синтезу та перетворення, що реагують на глюкозу, але використано спільний механізм вивільнення інсуліну за «дифузним типом». Інновації в хімії інсуліну та композиціях показують покращені клінічні результати від застосування.
Висновки. Інновації в галузі альтернативних шляхів введення інсуліну передбачають алгоритми для систем постійного моніторингу глюкози, глюкозочутливих полімерних матриць і біологічних структур з інсуліном. Впровадження неінвазійних систем сприятиме більш ранньому початку інсулінотерапії за рекомендаціями лікаря; це забезпечить кращий контроль глікемії та зменшить ризик ускладнень, що є основним навантаженням на систему охорони здоров’я. Застосування інсулінів з альтернативними системами доставлення може бути перспективним у профілактиці цукрового діабету 1 типу й інших захворювань.
Посилання
International Diabetes Federation. (2021). Diabetes Atlas, (10th ed.). https://www.diabetesatlas.org
Banting, F. G. (1925). Diabetes and insulin: Nobel lecture. https://www.nobelprize.org/prizes/medicine/1923/banting/lecture/
Home, P. (2021). The evolution of insulin therapy. Diabetes research and clinical practice, 175, 108816. https://doi.org/10.1016/j.diabres.2021.108816
Bhutta, Z. A., Salam, R. A., Gomber, A., Lewis-Watts, L., Narang, T., Mbanya, J. C., & Alleyne, G. (2021). A century past the discovery of insulin: global progress and challenges for type 1 diabetes among children and adolescents in low-income and middle-income countries. Lancet, 398(10313), 1837-1850. https://doi.org/10.1016/S0140-6736(21)02247-9
Drucker, D. J. (2021). Transforming type 1 diabetes: the next wave of innovation. Diabetologia, 64(5), 1059-1065. https://doi.org/10.1007/s00125-021-05396-5
Wright, A., Burden, A. C., Paisey, R. B., Cull, C. A., Holman, R. R., & U.K. Prospective Diabetes Study Group (2002). Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes care, 25(2), 330-336. https://doi.org/10.2337/diacare.25.2.330
Turchin, A., Hosomura, N., Zhang, H., Malmasi, S., & Shubina, M. (2020). Predictors and consequences of declining insulin therapy by individuals with type 2 diabetes. Diabetic medicine, 37(5), 814-821. https://doi.org/10.1111/dme.14260
Hendrieckx, C., Halliday, J. A., Beeney, L. J., & Speight, J. (2019). Diabetes and emotional health: a practical guide for healthcare professionals supporting adults with Type 1 and Type 2 diabetes, (2nd ed.) London: Diabetes UK. https://www.diabetes.org.uk/resources-s3/2019-03/0506%20Diabetes%20UK%20Australian%20Handbook_P4_FINAL_1.pdf
Sood, A., & Panchagnula, R. (2001). Peroral route: an opportunity for protein and peptide drug delivery. Chemical reviews, 101(11), 3275-3303. https://doi.org/10.1021/cr000700m
Raghavendran, S., Inbaraj, L. R., & Norman, G. (2020). Reason for refusal of insulin therapy among type 2 diabetes mellitus patients in primary care clinic in Bangalore. Journal of family medicine and primary care, 9(2), 854-858. https://doi.org/10.4103/jfmpc.jfmpc_973_19
Truong, T. H., Nguyen, T. T., Armor, B. L., & Farley, J. R. (2017). Errors in the Administration Technique of Insulin Pen Devices: A Result of Insufficient Education. Diabetes therapy : research, treatment and education of diabetes and related disorders, 8(2), 221-226. https://doi.org/10.1007/s13300-017-0242-y
NCD Risk Factor Collaboration (NCD-RisC) (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 387(10027), 1513-1530. https://doi.org/10.1016/S0140-6736(16)00618-8
Brayden, D. (2021). The Centenary of the Discovery of Insulin: An Update on the Quest for Oral Delivery. Frontiers in Drug Delivery, 1, 726675. https://doi.org/10.3389/fddev.2021.726675
Chatterjee, S., Bhushan Sharma, C., Lavie, C. J., Adhikari, A., Deedwania, P., & O'keefe, J. H. (2020). Oral insulin: an update. Minerva endocrinologica, 45(1), 49-60. https://doi.org/10.23736/S0391-1977.19.03055-4
Chan, J., & Cheng-Lai, A. (2017). Inhaled Insulin: A Clinical and Historical Review. Cardiology in review, 25(3), 140-146. https://doi.org/10.1097/CRD.0000000000000143
Setji, T. L., Hong, B. D., & Feinglos, M. N. (2016). Technosphere insulin: inhaled prandial insulin. Expert opinion on biological therapy, 16(1), 111-117. https://doi.org/10.1517/14712598.2016.1121230
Dovc, K., & Battelino, T. (2020). Evolution of Diabetes Technology. Endocrinology and metabolism clinics of North America, 49(1), 1-18. https://doi.org/10.1016/j.ecl.2019.10.009
Cernea, S., & Raz, I. (2020). Insulin Therapy: Future Perspectives. American journal of therapeutics, 27(1), e121-e132. https://doi.org/10.1097/MJT.0000000000001076
Rege, N. K., Phillips, N. F. B., & Weiss, M. A. (2017). Development of glucose-responsive 'smart' insulin systems. Current opinion in endocrinology, diabetes, and obesity, 24(4), 267-278. https://doi.org/10.1097/MED.0000000000000345
Halberg, I. B., Lyby, K., Wassermann, K., Heise, T., Zijlstra, E., & Plum-Mörschel, L. (2019). Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. The lancet. Diabetes & endocrinology, 7(3), 179-188. https://doi.org/10.1016/S2213-8587(18)30372-3
Easa, N., Alany, R. G., Carew, M., & Vangala, A. (2019). A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug discovery today, 24(2), 440-451. https://doi.org/10.1016/j.drudis.2018.11.010
Seaquist, E. R., Blonde, L., McGill, J. B., Heller, S. R., Kendall, D. M., Bumpass, J. B., Pompilio, F. M., & Grant, M. L. (2020). Hypoglycaemia is reduced with use of inhaled Technosphere® Insulin relative to insulin aspart in type 1 diabetes mellitus. Diabetic medicine, 37(5), 752-759. https://doi.org/10.1111/dme.14202
Nuffer, W., & Trujillo, J. (2016). The Role of Inhaled Insulin in the Management of Type 2 Diabetes. Pharmacology & Pharmacy, 07(04), 162-169. https://doi.org/10.4236/pp.2016.74021
Hallschmid M. (2021). Intranasal insulin. Journal of neuroendocrinology, 33(4), e12934. https://doi.org/10.1111/jne.12934
Caffarel-Salvador, E., Kim, S., Soares, V., Tian, R. Y., Stern, S. R., Minahan, D., Yona, R., Lu, X., Zakaria, F. R., Collins, J., Wainer, J., Wong, J., McManus, R., Tamang, S., McDonnell, S., Ishida, K., Hayward, A., Liu, X., Hubálek, F., Fels, J., … Traverso, G. (2021). A microneedle platform for buccal macromolecule delivery. Science advances, 7(4), eabe2620. https://doi.org/10.1126/sciadv.abe2620
Rosenstock, J., Bajaj, H. S., Janež, A., Silver, R., Begtrup, K., Hansen, M. V., Jia, T., Goldenberg, R., & NN1436-4383 Investigators (2020). Once-Weekly Insulin for Type 2 Diabetes without Previous Insulin Treatment. The New England journal of medicine, 383(22), 2107-2116. https://doi.org/10.1056/NEJMoa2022474
Shah, R. B., Patel, M., Maahs, D. M., & Shah, V. N. (2016). Insulin delivery methods: Past, present and future. International journal of pharmaceutical investigation, 6(1), 1-9. https://doi.org/10.4103/2230-973X.176456
Rasmussen, C. H., Røge, R. M., Ma, Z., Thomsen, M., Thorisdottir, R. L., Chen, J. W., Mosekilde, E., & Colding-Jørgensen, M. (2014). Insulin aspart pharmacokinetics: an assessment of its variability and underlying mechanisms. European journal of pharmaceutical sciences, 62, 65-75. https://doi.org/10.1016/j.ejps.2014.05.010
Souto, E. B., Souto, S. B., Campos, J. R., Severino, P., Pashirova, T. N., Zakharova, L. Y., Silva, A. M., Durazzo, A., Lucarini, M., Izzo, A. A., & Santini, A. (2019). Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules, 24(23), 4209. https://doi.org/10.3390/molecules24234209
Chen, Z., Han, S., Yang, X., Xu, L., Qi, H., Hao, G., Cao, J., Liang, Y., Ma, Q., Zhang, G., & Sun, Y. (2020). Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid. International journal of nanomedicine, 15, 4877-4898. https://doi.org/10.2147/IJN.S251627
Ge, L., You, X., Zhang, Y., Huang, K., Lu, X., Ren, Y., Zhu, Y., Dhinakar, A., Wu, J., & Qian, H. (2017). Development of self-emulsifying nanoplatform as anti-diabetic sulfonylurea carrier for oral diabetes therapy. Journal of Biomedical Nanotechnology, 13(8), 931-945. https://doi.org/10.1166/jbn.2017.2385
Al Rubeaan, K., Rafiullah, M., & Jayavanth, S. (2016). Oral insulin delivery systems using chitosan-based formulation: a review. Expert opinion on drug delivery, 13(2), 223-237. https://doi.org/10.1517/17425247.2016.1107543
Li, L., Jiang, G., Yu, W., Liu, D., Chen, H., Liu, Y., Huang, Q., Tong, Z., Yao, J., & Kong, X. (2016). A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin. Materials science & engineering. C, Materials for biological applications, 69, 37-45. https://doi.org/10.1016/j.msec.2016.06.059
Sun, Q., Zhang, Z., Zhang, R., Gao, R., & McClements, D. J. (2018). Development of Functional or Medical Foods for Oral Administration of Insulin for Diabetes Treatment: Gastroprotective Edible Microgels. Journal of agricultural and food chemistry, 66(19), 4820-4826. https://doi.org/10.1021/acs.jafc.8b00233
Gedawy, A., Martinez, J., Al-Salami, H., & Dass, C. R. (2018). Oral insulin delivery: existing barriers and current counter-strategies. The Journal of pharmacy and pharmacology, 70(2), 197-213. https://doi.org/10.1111/jphp.12852
Jarosinski, M. A., Dhayalan, B., Rege, N., Chatterjee, D., & Weiss, M. A. (2021). 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia, 64(5), 1016-1029. https://doi.org/10.1007/s00125-021-05422-6
Primavera, R., Bellotti, E., Di Mascolo, D., Di Francesco, M., Wang, J., Kevadiya, B. D., De Pascale, A., Thakor, A. S., & Decuzzi, P. (2021). Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS applied materials & interfaces, 13(45), 53618-53629. https://doi.org/10.1021/acsami.1c16768
Feyzioğlu-Demir, E., Üzüm, Ö. B. & Akgöl, S. (2022). Swelling and diffusion behaviour of spherical morphological polymeric hydrogel membranes (SMPHMs) containing epoxy groups and their application as drug release systems. Polymer Bulletin, 79. https://doi.org/10.1007/s00289-022-04368-y
Xie, H., Ma, X., Lin, W., Dong, S., Liu, Q., Chen, Y., & Gao, Q. (2021). Linear Dextrin as Potential Insulin Delivery System: Effect of Degree of Polymerization on the Physicochemical Properties of Linear Dextrin-Insulin Inclusion Complexes. Polymers, 13(23), 4187. https://doi.org/10.3390/polym13234187
Li, C., Liu, X., Liu, Y., Huang, F., Wu, G., Liu, Y., Zhang, Z., Ding, Y., Lv, J., Ma, R., An, Y., & Shi, L., (2019). Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale, 11(18), 9163-9175. https://doi.org/10.1039/c9nr01554j
Chai, Z., Dong, H., Sun, X., Fan, Y., Wang, Y., & Huang, F. (2020). Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. International journal of biological macromolecules, 159, 640-647. https://doi.org/10.1016/j.ijbiomac.2020.05.097
Mohammadpour, F., Hadizadeh, F., Tafaghodi, M., Sadri, K., Mohammadpour, A. H., Kalani, M. R., Gholami, L., Mahmoudi, A., & Chamani, J. (2019). Preparation, in vitro and in vivo evaluation of PLGA/Chitosan based nano-complex as a novel insulin delivery formulation. International journal of pharmaceutics, 572, 118710. https://doi.org/10.1016/j.ijpharm.2019.118710
Sarkar, S., Das, D., Dutta, P., Kalita, J., Wann, S. B., & Manna, P. (2020). Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydrate polymers, 247, 116594. https://doi.org/10.1016/j.carbpol.2020.116594
Matsumoto, A., Tanaka, M., Matsumoto, H., Ochi, K., Moro-Oka, Y., Kuwata, H., Yamada, H., Shirakawa, I., Miyazawa, T., Ishii, H., Kataoka, K., Ogawa, Y., Miyahara, Y., & Suganami, T. (2017). Synthetic "smart gel" provides glucose-responsive insulin delivery in diabetic mice. Science advances, 3(11), eaaq0723. https://doi.org/10.1126/sciadv.aaq0723
Mohanty, A. R., Ravikumar, A., & Peppas, N. A. (2022). Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications. Regenerative biomaterials, 9, rbac056. https://doi.org/10.1093/rb/rbac056
Farhoudi, N., Leu, H. Y., Laurentius, L. B., Magda, J. J., Solzbacher, F., & Reiche, C. F. (2020). Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing. ACS sensors, 5(7), 1882-1889. https://doi.org/10.1021/acssensors.9b02180
Song, J., Zhang, Y., Chan, S. Y., Du, Z., Yan, Y., Wang, T., Li, P., & Huang, W. (2021). Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 5, 26. https://doi.org/10.1038/s41528-021-00122-y
Yu, J., Zhang, Y., Sun, W., Kahkoska, A. R., Wang, J., Buse, J. B., & Gu, Z. (2017). Insulin-Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 13(19), 10.1002/smll.201603028. https://doi.org/10.1002/smll.201603028
Culebras, M., Barrett, A., Pishnamazi, M., Walker, G. M., & Collins, M. N. (2021). Wood-Derived Hydrogels as a Platform for Drug-Release Systems. ACS sustainable chemistry & engineering, 9(6), 2515-2522. https://doi.org/10.1021/acssuschemeng.0c08022
Zhang, Y., Zhou, W., Shen, L., Lang, L., Huang, X., Sheng, H., Ning, G., & Wang, W. (2022). Safety, Pharmacokinetics, and Pharmacodynamics of Oral Insulin Administration in Healthy Subjects: A Randomized, Double-Blind, Phase 1 Trial. Clinical pharmacology in drug development, 11(5), 606-614. https://doi.org/10.1002/cpdd.1060
Hubálek, F., Refsgaard, H. H. F., Gram-Nielsen, S., Madsen, P., Nishimura, E., Münzel, M., Brand, C. L., Stidsen, C. E., Claussen, C. H., Wulff, E. M., Pridal, L., Ribel, U., Kildegaard, J., Porsgaard, T., Johansson, E., Steensgaard, D. B., Hovgaard, L., Glendorf, T., Hansen, B. F., Jensen, M. K., … Kjeldsen, T. (2020). Molecular engineering of safe and efficacious oral basal insulin. Nature communications, 11(1), 3746. https://doi.org/10.1038/s41467-020-17487-9
Benyettou, F., Kaddour, N., Prakasam, T., Das, G., Sharma, S. K., Thomas, S. A., Bekhti-Sari, F., Whelan, J., Alkhalifah, M. A., Khair, M., Traboulsi, H., Pasricha, R., Jagannathan, R., Mokhtari-Soulimane, N., Gándara, F., & Trabolsi, A. (2021). In vivo oral insulin delivery via covalent organic frameworks. Chemical science, 12(17), 6037-6047. https://doi.org/10.1039/d0sc05328g
Domokos, G., & Várkonyi, P. L. (2008). Geometry and self-righting of turtles. Proceedings. Biological sciences, 275(1630), 11-17. https://doi.org/10.1098/rspb.2007.1188
Abramson, A., Caffarel-Salvador, E., Khang, M., Dellal, D., Silverstein, D., Gao, Y., Frederiksen, M. R., Vegge, A., Hubálek, F., Water, J. J., Friderichsen, A. V., Fels, J., Kirk, R. K., Cleveland, C., Collins, J., Tamang, S., Hayward, A., Landh, T., Buckley, S. T., Roxhed, N., … Traverso, G. (2019). An ingestible self-orienting system for oral delivery of macromolecules. Science, 363(6427), 611-615. https://doi.org/10.1126/science.aau2277
Abramson, A., Frederiksen, M. R., Vegge, A., Jensen, B., Poulsen, M., Mouridsen, B., Jespersen, M. O., Kirk, R. K., Windum, J., Hubálek, F., Water, J. J., Fels, J., Gunnarsson, S. B., Bohr, A., Straarup, E. M., Ley, M. W. H., Lu, X., Wainer, J., Collins, J., Tamang, S., … Traverso, G. (2022). Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nature biotechnology, 40(1), 103-109. https://doi.org/10.1038/s41587-021-01024-0
Eldor, R., Neutel, J., Homer, K., & Kidron, M. (2021). Efficacy and safety of 28-day treatment with oral insulin (ORMD-0801) in patients with type 2 diabetes: A randomized, placebo-controlled trial. Diabetes, obesity & metabolism, 23(11), 2529-2538. https://doi.org/10.1111/dom.14499
Eldor, R., G. Fleming, A., Neutel, J., Homer, K. E., Kidron, M., & Rosenstock J. (2020). 105-LB: Evening Oral Insulin (ORMD-0801) Glycemic Effects in Uncontrolled T2DM Patients. Diabetes, 69(Supplement_1). https://doi.org/10.2337/db20-105-lb
Zijlstra, E., Heinemann, L., & Plum-Mörschel, L. (2014). Oral insulin reloaded: a structured approach. Journal of diabetes science and technology, 8(3), 458-465. https://doi.org/10.1177/1932296814529988
New Drug Approvals. (n.d.). OI 338. https://newdrugapprovals.org/2021/01/25/oi-338/
Lansdowne, L. E., & Campbell, M. (2021, April 28). A Step Closer to Orally-Delivered Insulin for Diabetes. Technology Networks. Drug Delivery. https://www.technologynetworks.com/drug-discovery/articles/a-step-closer-to-orally-delivered-insulin-for-diabetes-348218
Aquestive. (2020). Innovative Drug Delivery. https://aquestive.com/innovative-drug-delivery-pharmfilm/
Harrison, L. C. (2021). The dark side of insulin: A primary autoantigen and instrument of self-destruction in type 1 diabetes. Molecular metabolism, 52, 101288. https://doi.org/10.1016/j.molmet.2021.101288
Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group, Krischer, J. P., Schatz, D. A., Bundy, B., Skyler, J. S., & Greenbaum, C. J. (2017). Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes: A Randomized Clinical Trial. JAMA, 318(19), 1891-1902. https://doi.org/10.1001/jama.2017.17070
Bonifacio, E., Ziegler, A. G., Klingensmith, G., Schober, E., Bingley, P. J., Rottenkolber, M., Theil, A., Eugster, A., Puff, R., Peplow, C., Buettner, F., Lange, K., Hasford, J., Achenbach, P., & Pre-POINT Study Group (2015). Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA, 313(15), 1541-1549. https://doi.org/10.1001/jama.2015.2928
Zhang, Y., Yu, J., Kahkoska, A. R., Wang, J., Buse, J. B., & Gu, Z. (2019). Advances in transdermal insulin delivery. Advanced drug delivery reviews, 139, 51-70. https://doi.org/10.1016/j.addr.2018.12.006
Vadlapatla, R., Wong, E. Y., & Gayakwad, S. G. (2017). Electronic drug delivery systems: Journal of Drug Delivery Science and Technology, 41, 359-366. https://doi.org/10.1016/j.jddst.2017.08.008
Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y., & Gu, Z. (2016). Mechanical Force-Triggered Drug Delivery. Chemical reviews, 116(19), 12536-12563. https://doi.org/10.1021/acs.chemrev.6b00369
Bhatnagar, S., Dave, K., & Venuganti, V. V. K. (2017). Microneedles in the clinic. Journal of controlled release, 260, 164-182. https://doi.org/10.1016/j.jconrel.2017.05.029
Jin, X., Zhu, D. D., Chen, B. Z., Ashfaq, M., & Guo, X. D. (2018). Insulin delivery systems combined with microneedle technology. Advanced drug delivery reviews, 127, 119-137. https://doi.org/10.1016/j.addr.2018.03.011
Rzhevskiy, A. S., Singh, T. R. R., Donnelly, R. F., & Anissimov, Y. G. (2018). Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. Journal of controlled release, 270, 184-202. https://doi.org/10.1016/j.jconrel.2017.11.048
Larrañeta, E., McCrudden, M. T., Courtenay, A. J., & Donnelly, R. F. (2016). Microneedles: A New Frontier in Nanomedicine Delivery. Pharmaceutical research, 33(5), 1055-1073. https://doi.org/10.1007/s11095-016-1885-5
Prausnitz, M. R. (2017). Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annual review of chemical and biomolecular engineering, 8, 177-200. https://doi.org/10.1146/annurev-chembioeng-060816-101514
Gradel, A. K. J., Porsgaard, T., Lykkesfeldt, J., Seested, T., Gram-Nielsen, S., Kristensen, N. R., & Refsgaard, H. H. F. (2018). Factors Affecting the Absorption of Subcutaneously Administered Insulin: Effect on Variability. Journal of diabetes research, 2018, 1205121. https://doi.org/10.1155/2018/1205121
Barclay, L. (2006, February 9). Exubera Approved Despite Initial Lung Function Concerns. Medscape. https://www.medscape.com/viewarticle/523294
Khan, A. B., Ahmad, A., Ahmad, S., Gul, M., Iqbal, F., Ullah, H., Laiba, S., & Orakzai, U. K. (2022). Comparative Analysis of Inhaled Insulin With Other Types in Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cureus, 14(4), e23731. https://doi.org/10.7759/cureus.23731
Annabestani, Z., Sharghi, S., Shahbazi, S., Monfared, S., Karimi, F., Taheri, E., Heshmat, R., & Larijani, B. (2010). Insulin buccal spray (Oral-Lyn) efficacy in type 1 diabetes. Iranian Journal of Diabetes and Lipid Disorders, 9, 1-4.
Nazar, H., Caliceti, P., Carpenter, B., El-Mallah, A. I., Fatouros, D. G., Roldo, M., van der Merwe, S. M., & Tsibouklis, J. (2013). A once-a-day dosage form for the delivery of insulin through the nasal route: in vitro assessment and in vivo evaluation. Biomaterials science, 1(3), 306-314. https://doi.org/10.1039/c2bm00132b
Tashima, T. (2020). Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules, 25(21), 5188. https://doi.org/10.3390/molecules25215188
Novak, V., Mantzoros, C. S., Novak, P., McGlinchey, R., Dai, W., Lioutas, V., Buss, S., Fortier, C. B., Khan, F., Aponte Becerra, L., & Ngo, L. H. (2022). MemAID: Memory advancement with intranasal insulin vs. placebo in type 2 diabetes and control participants: a randomized clinical trial. Journal of neurology, 269(9), 4817-4835. https://doi.org/10.1007/s00415-022-11119-6
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).