Myocardial ischemia – reperfusion injury
DOI:
https://doi.org/10.14739/2310-1210.2023.5.279461Keywords:
myocardial infarction, acute coronary syndrome, stenting, reperfusion, no-reflow phenomenon, reperfusion injuryAbstract
Aim. To summarize and broaden the idea about mechanisms of acute coronary insufficiency development and pathophysiological features of myocardial reperfusion injury.
Today, in the event of acute coronary syndrome, according to the latest recommendations for myocardial revascularization, percutaneous coronary intervention should be performed to determine the anatomy of coronary artery lesions and further percutaneous therapy. But in some patients, after blood flow restoration, reperfusion injury occurs, which is primarily related to the duration of ischemia, infarct size, and the myocardial resistance to ischemia.
Treatment of myocardial infarction, like any treatment method, has evolved. In the 60s of the previous century, it included morphine, oxygen, warfarin and bed rest for 4–6 weeks. Then, during the 70s, it consisted of morphine, oxygen, lidocaine, warfarin, bed rest for 2–3 weeks and possibly coronary angiography for the further bypass surgery. The late 1970s saw the rapid progress in thrombolysis, first intravenous and then intracoronary. And starting in the early 1980s, since G. Hartzler performed the first balloon angioplasty for acute coronary artery occlusion, the stage of mechanical myocardial reperfusion has come. At the same time, knowledge about the pathophysiology of acute coronary ischemia was deepened. The World Health Organization developed ECG criteria for acute myocardial infarction using population-based studies in the 1950s–1970s, and additional four normative European regulations since then were issued defining concepts, key points of diagnosis and possible complications of myocardial infarction.
Conclusions. The development of myocardial ischemic-reperfusion injury is a staged process that has a complex pathogenesis, its own clinical manifestations, and an association with more negative long-term outcomes of myocardial infarction treatment. Its main components are myocardial swelling involving cardiomyocytes, endotheliocytes, and the interstitial space; downregulation of cytoskeleton and disruption of sarcolemma integrity; increased vascular wall permeability; spasm of arterioles; intravascular accumulation of platelets and leukocytes, and the resultant the most severe form of myocardial damage is intramyocardial hemorrhage. Clinically, this is manifested by the no-reflow phenomenon following percutaneous coronary intervention.
References
Sandoval, Y., & Jaffe, A. S. (2019). Type 2 Myocardial Infarction: JACC Review Topic of the Week. Journal of the American College of Cardiology, 73(14), 1846-1860. https://doi.org/10.1016/j.jacc.2019.02.018
Souilhol, C., Harmsen, M. C., Evans, P. C., & Krenning, G. (2018). Endothelial-mesenchymal transition in atherosclerosis. Cardiovascular research, 114(4), 565-577. https://doi.org/10.1093/cvr/cvx253
Heusch, G. (2019). Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what?. American journal of physiology. Heart and circulatory physiology, 316(6), H1439-H1446. https://doi.org/10.1152/ajpheart.00139.2019
Herrick, J. B. (1912). Clinical features of sudden obstruction of the coronary arteries. Journal of the American Medical Association, LIX(23), 2015-2022. https://doi.org/10.1001/jama.1912.04270120001001
Khalfallah, M., Allaithy, A., & Maria, D. A. (2022). Impact of the Total Ischemia Time on No-Reflow Phenomenon in Patients with ST Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Anatolian journal of cardiology, 26(5), 382-387. https://doi.org/10.5152/AnatolJCardiol.2021.846
Dharmakumar, R. (2017). Colors of Myocardial Infarction: Can They Predict the Future?. Circulation. Cardiovascular imaging, 10(12), e007291. https://doi.org/10.1161/CIRCIMAGING.117.007291
Konijnenberg, L. S. F., Damman, P., Duncker, D. J., Kloner, R. A., Nijveldt, R., van Geuns, R. M., Berry, C., Riksen, N. P., Escaned, J., & van Royen, N. (2020). Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovascular research, 116(4), 787-805. https://doi.org/10.1093/cvr/cvz301
Bochaton, T., Lassus, J., Paccalet, A., Derimay, F., Rioufol, G., Prieur, C., Bonnefoy-Cudraz, E., Crola Da Silva, C., Bernelin, H., Amaz, C., Espanet, S., de Bourguignon, C., Dufay, N., Cartier, R., Croisille, P., Ovize, M., & Mewton, N. (2021). Association of myocardial hemorrhage and persistent microvascular obstruction with circulating inflammatory biomarkers in STEMI patients. PloS one, 16(1), e0245684. https://doi.org/10.1371/journal.pone.0245684
Beijnink, C. W. H., van der Hoeven, N. W., Konijnenberg, L. S. F., Kim, R. J., Bekkers, S. C. A. M., Kloner, R. A., Everaars, H., El Messaoudi, S., van Rossum, A. C., van Royen, N., & Nijveldt, R. (2021). Cardiac MRI to Visualize Myocardial Damage after ST-Segment Elevation Myocardial Infarction: A Review of Its Histologic Validation. Radiology, 301(1), 4-18. https://doi.org/10.1148/radiol.2021204265
Caiazzo, G., Musci, R. L., Frediani, L., Umińska, J., Wanha, W., Filipiak, K. J., Kubica, J., & Navarese, E. P. (2020). State of the Art: No-Reflow Phenomenon. Cardiology clinics, 38(4), 563-573. https://doi.org/10.1016/j.ccl.2020.07.001
Nguyen, T. N., Colombo, A., Hu, D., Grines, C. L., & Saito, S. (2009). Practical Handbook of Advanced Interventional Cardiology: Tips and Tricks. Practical Handbook of Advanced Interventional Cardiology: Tips and Tricks (pp. 1-616). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444312584
Sezer, M., van Royen, N., Umman, B., Bugra, Z., Bulluck, H., Hausenloy, D. J., & Umman, S. (2018). Coronary Microvascular Injury in Reperfused Acute Myocardial Infarction: A View From an Integrative Perspective. Journal of the American Heart Association, 7(21), e009949. https://doi.org/10.1161/JAHA.118.009949
McCartney, P. J., Eteiba, H., Maznyczka, A. M., McEntegart, M., Greenwood, J. P., Muir, D. F., Chowdhary, S., Gershlick, A. H., Appleby, C., Cotton, J. M., Wragg, A., Curzen, N., Oldroyd, K. G., Lindsay, M., Rocchiccioli, J. P., Shaukat, A., Good, R., Watkins, S., Robertson, K., Malkin, C., … T-TIME Group (2019). Effect of Low-Dose Intracoronary Alteplase During Primary Percutaneous Coronary Intervention on Microvascular Obstruction in Patients With Acute Myocardial Infarction: A Randomized Clinical Trial. JAMA, 321(1), 56-68. https://doi.org/10.1001/jama.2018.19802
Alkhalil, M., Borlotti, A., De Maria, G. L., Gaughran, L., Langrish, J., Lucking, A., Ferreira, V., Kharbanda, R. K., Banning, A. P., Channon, K. M., Dall'Armellina, E., & Choudhury, R. P. (2018). Dynamic changes in injured myocardium, very early after acute myocardial infarction, quantified using T1 mapping cardiovascular magnetic resonance. Journal of cardiovascular magnetic resonance, 20(1), 82. https://doi.org/10.1186/s12968-018-0506-3
Heusch, G. (2020). Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nature reviews. Cardiology, 17(12), 773-789. https://doi.org/10.1038/s41569-020-0403-y
Schirone, L., Forte, M., D'Ambrosio, L., Valenti, V., Vecchio, D., Schiavon, S., Spinosa, G., Sarto, G., Petrozza, V., Frati, G., & Sciarretta, S. (2022). An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells, 11(7), 1165. https://doi.org/10.3390/cells11071165
Bork, N. I., & Nikolaev, V. O. (2018). cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging. International journal of molecular sciences, 19(3), 801. https://doi.org/10.3390/ijms19030801
Niccoli, G., Montone, R. A., Ibanez, B., Thiele, H., Crea, F., Heusch, G., Bulluck, H., Hausenloy, D. J., Berry, C., Stiermaier, T., Camici, P. G., & Eitel, I. (2019). Optimized Treatment of ST-Elevation Myocardial Infarction. Circulation research, 125(2), 245-258. https://doi.org/10.1161/CIRCRESAHA.119.315344
Theofilis, P., Sagris, M., Oikonomou, E., Antonopoulos, A. S., Siasos, G., Tsioufis, C., & Tousoulis, D. (2021). Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines, 9(7), 781. https://doi.org/10.3390/biomedicines9070781
Masci, P. G., Pavon, A. G., Muller, O., Iglesias, J. F., Vincenti, G., Monney, P., Harbaoui, B., Eeckhout, E., & Schwitter, J. (2018). Relationship between CMR-derived parameters of ischemia/reperfusion injury and the timing of CMR after reperfused ST-segment elevation myocardial infarction. Journal of cardiovascular magnetic resonance, 20(1), 50. https://doi.org/10.1186/s12968-018-0474-7
Toldo, S., Mauro, A. G., Cutter, Z., & Abbate, A. (2018). Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. American journal of physiology. Heart and circulatory physiology, 315(6), H1553-H1568. https://doi.org/10.1152/ajpheart.00158.2018
Fan, J., Ren, M., Adhikari, B. K., Wang, H., & He, Y. (2022). The NLRP3 Inflammasome as a Novel Therapeutic Target for Cardiac Fibrosis. Journal of inflammation research, 15, 3847-3858. https://doi.org/10.2147/JIR.S370483
Chen, X., Tian, P. C., Wang, K., Wang, M., & Wang, K. (2022). Pyroptosis: Role and Mechanisms in Cardiovascular Disease. Frontiers in cardiovascular medicine, 9, 897815. https://doi.org/10.3389/fcvm.2022.897815
Konijnenberg, L. S. F., & van Royen, N. (2021). Perilipin 2 - another piece in the big jigsaw puzzle of coronary no reflow. European heart journal. Acute cardiovascular care, 10(6), 643-644. https://doi.org/10.1093/ehjacc/zuab035
Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., Lee, S. R., & Yang, S. H. (2021). The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International journal of molecular sciences, 22(5), 2719. https://doi.org/10.3390/ijms22052719
Mehanna, R. A., Essawy, M. M., Barkat, M. A., Awaad, A. K., Thabet, E. H., Hamed, H. A., Elkafrawy, H., Khalil, N. A., Sallam, A., Kholief, M. A., Ibrahim, S. S., & Mourad, G. M. (2022). Cardiac stem cells: Current knowledge and future prospects. World journal of stem cells, 14(1), 1-40. https://doi.org/10.4252/wjsc.v14.i1.1
Hausenloy, D. J., Chilian, W., Crea, F., Davidson, S. M., Ferdinandy, P., Garcia-Dorado, D., van Royen, N., Schulz, R., & Heusch, G. (2019). The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovascular research, 115(7), 1143-1155. https://doi.org/10.1093/cvr/cvy286
Heusch, G. (2018). Protection of the human coronary circulation by remote ischemic conditioning. International journal of cardiology, 252, 35-36. https://doi.org/10.1016/j.ijcard.2017.11.044
Feger, J. (2023, June 25). Myocardial edema. Radiopaedia.org. https://doi.org/10.53347/rID-78755.
Zorzi, A., Mattesi, G., Baldi, E., Toniolo, M., Guerra, F., Cauti, F. M., Cipriani, A., De Lazzari, M., Muser, D., Stronati, G., Marcantoni, L., Manfrin, M., Calò, L., Lanzillo, C., Perazzolo Marra, M., Savastano, S., & Corrado, D. (2021). Prognostic Role of Myocardial Edema as Evidenced by Early Cardiac Magnetic Resonance in Survivors of Out-of-Hospital Cardiac Arrest: A Multicenter Study. Journal of the American Heart Association, 10(22), e021861. https://doi.org/10.1161/JAHA.121.021861
Zhu, Q., Wang, S., Huang, X., Zhao, C., Wang, Y., Li, X., Jia, D., & Ma, C. (2022). Understanding the pathogenesis of coronary slow flow: Recent advances. Trends in cardiovascular medicine, S1050-1738(22)00142-6. Advance online publication. https://doi.org/10.1016/j.tcm.2022.12.001
Gómez, R. M., López Ortiz, A. O., & Schattner, M. (2021). New roles of platelets in inflammation. Current Opinion in Physiology, 19, 99-104. https://doi.org/10.1016/j.cophys.2020.08.017
Dreidi, M., Asmar, I., Jaghama, M., Alrimawi, I., & Atout, M. (2023). Electrolyte Imbalance Among Patients With and With No ST-Elevation Myocardial Infarction: A Cohort Study. Critical care nursing quarterly, 46(2), 136-144. https://doi.org/10.1097/CNQ.0000000000000446
d'Entremont, M. A., Alazzoni, A., Dzavik, V., Sharma, V., Overgaard, C. B., Lemaire-Paquette, S., Lamelas, P., Cairns, J. A., Mehta, S. R., Natarajan, M. K., Sheth, T. N., Schwalm, J. D., Rao, S. V., Stankovic, G., Kedev, S., Moreno, R., Cantor, W. J., Lavi, S., Bertrand, O. F., Nguyen, M., … Jolly, S. S. (2023). No-reflow after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction: an angiographic core laboratory analysis of the TOTAL Trial. EuroIntervention, EIJ-D-23-00112. Advance online publication. https://doi.org/10.4244/EIJ-D-23-00112
Kleinbongard, P., Lieder, H. R., Skyschally, A., Alloosh, M., Gödecke, A., Rahmann, S., Sturek, M., & Heusch, G. (2022). Non-responsiveness to cardioprotection by ischaemic preconditioning in Ossabaw minipigs with genetic predisposition to, but without the phenotype of the metabolic syndrome. Basic research in cardiology, 117(1), 58. https://doi.org/10.1007/s00395-022-00965-0
Kohlhauer, M., Pell, V. R., Burger, N., Spiroski, A. M., Gruszczyk, A., Mulvey, J. F., Mottahedin, A., Costa, A. S. H., Frezza, C., Ghaleh, B., Murphy, M. P., Tissier, R., & Krieg, T. (2019). Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic research in cardiology, 114(3), 18. https://doi.org/10.1007/s00395-019-0727-0
Schanze, N., Hamad, M. A., Nührenberg, T. G., Bode, C., & Duerschmied, D. (2023). Platelets in Myocardial Ischemia/Reperfusion Injury. Hamostaseologie, 43(2), 110-121. https://doi.org/10.1055/a-1739-9351
Tasar, O., Karabay, A. K., Oduncu, V., & Kirma, C. (2019). Predictors and outcomes of no-reflow phenomenon in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Coronary artery disease, 30(4), 270-276. https://doi.org/10.1097/MCA.0000000000000726
Bøtker, H. E., Hausenloy, D., Andreadou, I., Antonucci, S., Boengler, K., Davidson, S. M., Deshwal, S., Devaux, Y., Di Lisa, F., Di Sante, M., Efentakis, P., Femminò, S., García-Dorado, D., Giricz, Z., Ibanez, B., Iliodromitis, E., Kaludercic, N., Kleinbongard, P., Neuhäuser, M., Ovize, M., Heusch, G. (2018). Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic research in cardiology, 113(5), 39. https://doi.org/10.1007/s00395-018-0696-8
Halim, S. A. S A., Ghafar, N. A., Jubri, Z., & Das, S. (2018, November 1). Induction of myocardial infarction in experimental animals: A review. Journal of Clinical and Diagnostic Research. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2018/36997.12221
Vasques-Nóvoa, F., Angélico-Gonçalves, A., Alvarenga, J. M. G., Nobrega, J., Cerqueira, R. J., Mancio, J., Leite-Moreira, A. F., & Roncon-Albuquerque, R., Jr (2022). Myocardial oedema: pathophysiological basis and implications for the failing heart. ESC heart failure, 9(2), 958-976. https://doi.org/10.1002/ehf2.13775
Khan, K. A., Qamar, N., Saghir, T., Sial, J. A., Kumar, D., Kumar, R., Qayyum, D., Yasin, U., Jalbani, J., & Karim, M. (2022). Comparison of Intracoronary Epinephrine and Adenosine for No-Reflow in Normotensive Patients With Acute Coronary Syndrome (COAR Trial). Circulation. Cardiovascular interventions, 15(2), e011408. https://doi.org/10.1161/CIRCINTERVENTIONS.121.0114
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)